knn.kodama | R Documentation |
k-nearest neighbour classification for a test set from a training set.
knn.kodama(Xtrain, Ytrain, Xtest, Ytest=NULL, k, scaling = c("centering","autoscaling"), perm.test=FALSE, times=1000)
Xtrain |
a matrix of training set cases. |
Ytrain |
a classification vector. |
Xtest |
a matrix of test set cases. |
Ytest |
a classification vector. |
k |
the number of nearest neighbors to consider. |
scaling |
the scaling method to be used. Choices are " |
perm.test |
a classification vector. |
times |
a classification vector. |
The function utilizes the Approximate Nearest Neighbor (ANN) C++ library, which can give the exact nearest neighbours or (as the name suggests) approximate nearest neighbours to within a specified error bound. For more information on the ANN library please visit http://www.cs.umd.edu/~mount/ANN/.
The function returns a vector of predicted labels.
Stefano Cacciatore and Leonardo Tenori
Bentley JL (1975)
Multidimensional binary search trees used for associative search.
Communication ACM 1975;18:309-517.
Arya S, Mount DM
Approximate nearest neighbor searching
Proc. 4th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA'93);271-280.
Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY
An optimal algorithm for approximate nearest neighbor searching
Journal of the ACM 1998;45:891-923.
Cacciatore S, Luchinat C, Tenori L
Knowledge discovery by accuracy maximization.
Proc Natl Acad Sci U S A 2014;111(14):5117-22. doi: 10.1073/pnas.1220873111. Link
Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA
KODAMA: an updated R package for knowledge discovery and data mining.
Bioinformatics 2017;33(4):621-623. doi: 10.1093/bioinformatics/btw705. Link
KODAMA.matrix
,KODAMA.visualization
data(iris) data=iris[,-5] labels=iris[,5] ss=sample(150,15) z=knn.kodama(data[-ss,], labels[-ss], data[ss,], k=5) table(z$Ypred[,5],labels[ss])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.