Nothing
#' @name SOPC
#' @title Apply the SOPC method to the Laplace factor model
#' @description This function calculates various metrics for the sprase online principle component (SOPC) analysis
#' on the Laplace factor model.
#' @param data A numeric matrix containing the data used in the SOPC analysis.
#' @param m is the number of principal component
#' @param gamma is a sparse parameter
#' @param eta is the proportion of online data to total data
#' @usage SOPC(data, m, gamma,eta)
#' @return Aso,Dso
#' @examples
#' library(MASS)
#' library(matrixcalc)
#' library(LaplacesDemon)
#' n=1000
#' p=10
#' m=5
#' mu=t(matrix(rep(runif(p,0,1000),n),p,n))
#' mu0=as.matrix(runif(m,0))
#' sigma0=diag(runif(m,1))
#' F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
#' A=matrix(runif(p*m,-1,1),nrow=p)
#' lanor <- rlaplace(n*p,0,1)
#' epsilon=matrix(lanor,nrow=n)
#' D=diag(t(epsilon)%*%epsilon)
#' data=mu+F%*%t(A)+epsilon
#' results <- SOPC(data, m, gamma=0.03, eta=0.1)
#' print(results)
#' @export
#' @importFrom matrixcalc frobenius.norm
SOPC<-function(data,m,gamma,eta){
X<-scale(data)
S<-cov(X)
eig<-eigen(S)
p<-nrow(S)
n<-nrow(X)
n0<-round(eta*n)
Xbar<-colMeans(X[1:n0,])
S0<-cov(X[1:n0,])
lambda=eigen(S0)$values[1:m]
V<-eigen(S0)$vectors[,1:m]
paras<-rep(gamma,1*m,m)
Sd<-S0
iter1=0
for (i in (n0+1):n) {
iter1=iter1+1
Xcenter<-t(X[i,])
Sd<-((i-1)/i)*Sd+(1/i)*t(Xcenter)%*%Xcenter
lambda<-eigen(Sd)$values
spc<-spca(Sd,K=m,type="Gram",max.iter=0,sparse="penalty",trace=FALSE,para=paras)
V<-spc$loadings
}
lambda2<-lambda[1:m]
V2<-V[,1:m]
Aso<-matrix(0,nrow=p,ncol=m)
for (j in 1:m){
Aso[,j]<-sqrt(lambda2[j])*V2[,j]
}
Aso;table(Aso==0)
h2<-diag(Aso%*%t(Aso))
Dso<-diag(S-h2)
return(list(Aso=Aso,Dso=Dso))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.