Nothing
## -----------------------------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE, comment = "#>",
eval = identical(tolower(Sys.getenv("LLMR_RUN_VIGNETTES", "false")), "true")
)
## -----------------------------------------------------------------------------
library(LLMR)
library(dplyr)
cfg_openai <- llm_config("openai", "gpt-5-nano")
cfg_cld <- llm_config("anthropic","claude-sonnet-4-20250514", max_tokens = 512) # avoid warnings; Anthropic requires max_tokens
cfg_gemini <- llm_config("gemini", "gemini-2.5-flash")
cfg_groq <- llm_config("groq", "openai/gpt-oss-20b")
## -----------------------------------------------------------------------------
words <- c("excellent", "awful", "fine")
out <- llm_fn(
words,
prompt = "Classify '{x}' as Positive, Negative, or Neutral.",
.config = cfg_openai,
.return = "columns"
)
out
## -----------------------------------------------------------------------------
out_groq <- llm_fn(
words,
prompt = "Classify '{x}' as Positive, Negative, or Neutral.",
.config = cfg_groq,
.return = "columns"
)
out_groq
## -----------------------------------------------------------------------------
schema <- list(
type = "object",
properties = list(
label = list(type = "string", description = "Sentiment label"),
score = list(type = "number", description = "Confidence 0..1")
),
required = list("label", "score"),
additionalProperties = FALSE
)
out_s <- llm_fn_structured(
x = words,
prompt = "Classify '{x}' as Positive, Negative, or Neutral with confidence.",
.config = cfg_openai,
.schema = schema,
.fields = c("label", "score")
)
out_s
## -----------------------------------------------------------------------------
df <- tibble::tibble(
id = 1:3,
text = c("Cats are great pets", "The weather is bad", "I like tea")
)
df_u <- df |>
llm_mutate(
answer,
prompt = "Give a short category for: {text}",
.config = cfg_cld,
.return = "columns"
)
df_u
## -----------------------------------------------------------------------------
schema2 <- list(
type = "object",
properties = list(
category = list(type = "string"),
rationale = list(type = "string")
),
required = list("category", "rationale"),
additionalProperties = FALSE
)
df_s <- df |>
llm_mutate_structured(
annot,
prompt = "Extract category and a one-sentence rationale for: {text}",
.config = cfg_gemini,
.schema = schema2
# Because a schema is present, fields auto-hoist; you can also pass:
# .fields = c("category", "rationale")
)
df_s
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.