Nothing
<- function(command){
eval.parent(parse(text = command))
}
mlx.getLixoftConnectorsState <- function(quietly = TRUE) {
r <- NULL
(paste0('r <- lixoftConnectors::getLixoftConnectorsState(quietly = ',quietly,')'))
return(r)
}
mlx.initializeLixoftConnectors <- function(software = "monolix", path="", force = TRUE) {
r <- NULL
(paste0('r <- lixoftConnectors::initializeLixoftConnectors(software = "',software ,'",
path = "',path,'", force=',force,')'))
return(invisible(r))
}
mlx.setStructuralModel <- function(modelFile = NULL) {
(paste0('r <- lixoftConnectors::setStructuralModel(modelFile = "',modelFile,'")'))
}
mlx.getStructuralModel <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getStructuralModel()'))
return(r)
}
mlx.getTests <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getTests()'))
return(r)
}
mlx.getSAEMiterations <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getSAEMiterations()'))
return(r)
}
mlx.getPopulationParameterInformation <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getPopulationParameterInformation()'))
return(r)
}
mlx.getScenario <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getScenario()'))
return(r)
}
mlx.getObservationInformation <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getObservationInformation()'))
return(r)
}
mlx.getLaunchedTasks <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getLaunchedTasks()'))
return(r)
}
mlx.getEstimatedLogLikelihood <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getEstimatedLogLikelihood()'))
for (k in 1:length(r)) {
if (is.list(r[[k]]))
r[[k]] <- unlist(r[[k]])
if (!is.null(r[[k]]['-2LL']))
names(r[[k]]) <- gsub("-2LL", "OFV", names(r[[k]]))
i0 <- which(names(r[[k]])=='chosenDegree')
if (length(i0)>0)
r[[k]] <- r[[k]][-i0]
}
return(r)
}
mlx.getEstimatedPopulationParameters <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getEstimatedPopulationParameters()'))
return(r)
}
mlx.getConditionalDistributionSamplingSettings <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getConditionalDistributionSamplingSettings()'))
return(r)
}
mlx.getConditionalModeEstimationSettings <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getConditionalModeEstimationSettings()'))
return(r)
}
mlx.getContinuousObservationModel <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getContinuousObservationModel()'))
return(r)
}
mlx.getCovariateInformation <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getCovariateInformation()'))
sn <- setdiff(r$name,names(r$covariate))
if (length(sn)>0) {
d <- mlx.getProjectSettings()$directory
pind <- read.csv(file.path(d,"IndividualParameters/estimatedIndividualParameters.txt"))
if (all(sn %in% names(pind)))
r$covariate <- merge(r$covariate,pind[,c("id",sn)],by="id")
}
j.strat <- grep("stratification",r$type)
if (length(j.strat) > 0) {
strat.cov <- r$name[j.strat]
r$covariate <- r$covariate %>% select(-strat.cov)
r$type <- r$type[-j.strat]
r$name <- r$name[-j.strat]
}
return(r)
}
mlx.getAllCovariateInformation <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getCovariateInformation()'))
return(r)
}
mlx.getData <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getData()'))
return(r)
}
mlx.getDemoPath <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getDemoPath()'))
return(r)
}
mlx.getEstimatedIndividualParameters <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getEstimatedIndividualParameters()'))
return(r)
}
mlx.getEstimatedRandomEffects <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getEstimatedRandomEffects()'))
return(r)
}
mlx.getEstimatedStandardErrors <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getEstimatedStandardErrors()'))
# for (k in 1:length(r)) {
# if (is.list(r[[k]]))
# r[[k]] <- unlist(r[[k]])
# }
return(r)
}
mlx.getGeneralSettings <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getGeneralSettings()'))
return(r)
}
mlx.getIndividualParameterModel <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getIndividualParameterModel()'))
return(r)
}
mlx.getLogLikelihoodEstimationSettings <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getLogLikelihoodEstimationSettings()'))
return(r)
}
mlx.getPopulationParameterEstimationSettings <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getPopulationParameterEstimationSettings()'))
return(r)
}
mlx.getProjectSettings <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getProjectSettings()'))
return(r)
}
mlx.getSimulatedIndividualParameters <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getSimulatedIndividualParameters()'))
if (is.factor(r$rep)) r$rep <- as.numeric(as.character(r$rep))
return(r)
}
mlx.getSimulatedRandomEffects <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getSimulatedRandomEffects()'))
if (is.factor(r$rep)) r$rep <- as.numeric(as.character(r$rep))
return(r)
}
mlx.getStandardErrorEstimationSettings <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getStandardErrorEstimationSettings()'))
return(r)
}
mlx.runConditionalDistributionSampling <- function() {
(paste0('r <- lixoftConnectors::runConditionalDistributionSampling()'))
}
mlx.runConditionalModeEstimation <- function() {
(paste0('r <- lixoftConnectors::runConditionalModeEstimation()'))
}
mlx.runStandardErrorEstimation <- function(linearization=NULL) {
(paste0('r <- lixoftConnectors::runStandardErrorEstimation(linearization = ',linearization,')'))
}
mlx.runScenario <- function() {
('r <- lixoftConnectors::runScenario()')
}
mlx.setInitialEstimatesToLastEstimates <- function(fixedEffectsOnly = F) {
(paste0('r <- lixoftConnectors::setInitialEstimatesToLastEstimates(fixedEffectsOnly=fixedEffectsOnly)'))
}
mlx.setPopulationParameterInformation <- function(a) {
(paste0('r <- lixoftConnectors::setPopulationParameterInformation(a)'))
}
mlx.loadProject <- function(projectFile=NULL) {
(paste0('r <- lixoftConnectors::loadProject(projectFile = "',projectFile,'")'))
}
mlx.setScenario <- function(a) {
(paste0('r <- lixoftConnectors::setScenario(a)'))
}
mlx.setConditionalDistributionSamplingSettings <- function(a) {
(paste0('r <- lixoftConnectors::setConditionalDistributionSamplingSettings(a)'))
}
mlx.setConditionalModeEstimationSettings <- function(a) {
(paste0('r <- lixoftConnectors::setConditionalModeEstimationSettings(a)'))
}
mlx.computePredictions <- function(a) {
(paste0('r <- lixoftConnectors::computePredictions(a)'))
}
mlx.setCovariateModel <- function(a) {
(paste0('r <- lixoftConnectors::setCovariateModel(a)'))
}
mlx.setIndividualParameterModel <- function(a) {
(paste0('lixoftConnectors::setIndividualParameterModel(a)'))
}
mlx.getMapping <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getMapping()'))
return(r)
}
mlx.setMapping <- function(a) {
(paste0('lixoftConnectors::setMapping(a)'))
}
mlx.setCorrelationBlocks <- function(a) {
(paste0('r <- lixoftConnectors::setCorrelationBlocks(a)'))
}
mlx.setData <- function(a) {
(paste0('r <- lixoftConnectors::setData(a)'))
}
mlx.setErrorModel <- function(a) {
(paste0('r <- lixoftConnectors::setErrorModel(a)'))
}
mlx.setGeneralSettings <- function(g) {
(paste0('r <- lixoftConnectors::setGeneralSettings(g)'))
}
mlx.setLogLikelihoodEstimationSettings <- function(a) {
(paste0('r <- lixoftConnectors::setLogLikelihoodEstimationSettings(a)'))
}
mlx.setPopulationParameterEstimationSettings <- function(g) {
(paste0('r <- lixoftConnectors::setPopulationParameterEstimationSettings(g)'))
}
mlx.newProject <- function(data = NULL, modelFile = NULL) {
(paste0('r <- lixoftConnectors::newProject(data = data, modelFile = modelFile)'))
}
mlx.setProjectSettings <- function(directory = NULL, dataandmodelnexttoproject = NULL) {
if (!is.null(directory)) {
(paste0('r <- lixoftConnectors::setProjectSettings(directory = directory)'))
} else {
if (!is.null(dataandmodelnexttoproject)) {
(paste0('r <- lixoftConnectors::setProjectSettings(dataandmodelnexttoproject = dataandmodelnexttoproject)'))
}
}
}
mlx.setStandardErrorEstimationSettings <- function(a) {
(paste0('r <- lixoftConnectors::setStandardErrorEstimationSettings (a)'))
}
mlx.setObservationDistribution <- function(a) {
(paste0('r <- lixoftConnectors::setObservationDistribution (a)'))
}
mlx.saveProject <- function(projectFile=NULL) {
if (is.null(projectFile)) {
(paste0('r <- lixoftConnectors::saveProject()'))
} else {
(paste0('r <- lixoftConnectors::saveProject(projectFile = projectFile)'))
}
}
mlx.runPopulationParameterEstimation <- function(parameters=NULL) {
r <- NULL
if (!is.null(parameters))
(paste0('r <- lixoftConnectors::runPopulationParameterEstimation(parameters=parameters)'))
else
(paste0('r <- lixoftConnectors::runPopulationParameterEstimation()'))
(paste0('r0 <- lixoftConnectors::runConditionalModeEstimation()'))
return(r)
}
mlx.runLogLikelihoodEstimation <- function(linearization = FALSE) {
(paste0('r <- lixoftConnectors::runLogLikelihoodEstimation(linearization = linearization)'))
}
mlx.getLibraryModelName <- function(library) {
(paste0('r <- lixoftConnectors::getLibraryModelName(library)'))
}
mlx.saveFormattedFile <- function(path) {
(paste0('r <- lixoftConnectors::getFormatting()'))
(paste0('r$formattedFile <- path'))
(paste0('do.call(lixoftConnectors::formatData, r)'))
}
mlx.getFormatting <- function() {
r <- NULL
(paste0('r <- lixoftConnectors::getFormatting()'))
return(r)
}
Rsmlx.p.weight <- function(p,pw,coef){
r <- NULL
(paste0('r <- Rsmlx:::p.weight(p=p,pw=pw,coef=coef)'))
return(r)
}
print_result <- function (print, summary.file, to.cat = NULL, to.print = NULL)
{
if (file.exists(summary.file))
sink(summary.file, append = TRUE)
else sink(summary.file)
if (!is.null(to.cat))
cat(to.cat)
if (!is.null(to.print))
print(to.print)
sink()
if (print) {
if (!is.null(to.cat))
cat(to.cat)
if (!is.null(to.print))
print(to.print)
}
}
Rsmlx.compute.criterion <- function(criterion, method.ll, weight = NULL, pen.coef = NULL){
r <- NULL
(paste0('r <- Rsmlx:::compute.criterion(criterion,method.ll,weight,pen.coef)'))
return(r)
}
Rsmlx.formatLL <- function(ll,criterion,cr,is.weight,is.prior=F){
r <- NULL
(paste0('r <- Rsmlx:::formatLL(ll,criterion,cr,is.weight,is.prior)'))
return(r)
}
Rsmlx.correlationTest <- function(project = NULL, n.sample = NULL, plot = FALSE){
r <- NULL
(paste0('r <- Rsmlx:::correlationTest(project,n.sample,plot)'))
return(r)
}
Rsmlx.sortCov <- function(r,cov.ini){
r <- NULL
(paste0('r <- Rsmlx:::sortCov(r,cov.ini)'))
return(r)
}
Rsmlx.formatCovariateModel <- function(m,cov.ini=NULL){
r <- NULL
(paste0('r <- Rsmlx:::formatCovariateModel(m,cov.ini)'))
return(r)
}
Rsmlx.formatErrorModel <- function(m){
r <- NULL
(paste0('r <- Rsmlx:::formatErrorModel(m)'))
return(r)
}
Rsmlx.covariateModelSelection <- function(pen.coef = NULL, weight = 1, n.full = 10, nb.model = 1,
covToTransform = NULL, covFix = NULL, direction = "both",
paramToUse = "all", steps = 1000, p.max = 1, sp0 = NULL,
iter = 1, correlation.model = NULL, eta = NULL){
r <- NULL
(paste0('r <- Rsmlx:::covariateModelSelection(pen.coef,weight,n.full,nb.model,covToTransform,covFix,direction,paramToUse,steps,p.max,sp0,iter,correlation.model,eta)'))
return(r)
}
Rsmlx.prcheck <- function(project, f = NULL, settings = NULL, model = NULL,
paramToUse = NULL, parameters = NULL, level = NULL, tests = NULL,
nboot = NULL, method = NULL){
r <- NULL
(paste0('r <- Rsmlx:::prcheck(project,f,settings,model,paramToUse,parameters,level,tests,nboot,method)'))
return(r)
}
Rsmlx.buildmlx.check <- function(project, final.project, model, paramToUse, covToTest,
covToTransform, center.covariate, criterion, linearization,
ll, test, direction, steps, max.iter, explor.iter, seq.cov,
seq.cov.iter, seq.corr, p.max, p.min, print, nb.model, prior,
weight, n.full){
r <- NULL
(paste0('r <- Rsmlx:::buildmlx.check(project, final.project, model, paramToUse, covToTest,
covToTransform, center.covariate, criterion, linearization,
ll, test, direction, steps, max.iter, explor.iter, seq.cov,
seq.cov.iter, seq.corr, p.max, p.min, print, nb.model, prior,
weight, n.full)'))
return(r)
}
Rsmlx.def.variable <- function(weight = NULL, prior = NULL, criterion = NULL, fix.param0 = NULL,
fix.param1 = NULL){
r <- NULL
(paste0('r <- Rsmlx:::def.variable(weight,prior,criterion,fix.param0,fix.param1)'))
return(r)
}
Rsmlx.errorModelSelection <- function(project = NULL, pen.coef = NULL, nb.model = 1, f.min = 0.001){
r <- NULL
(' r <- Rsmlx:::errorModelSelection(project,pen.coef,nb.model,f.min)')
return(r)
}
Rsmlx.covariate.test <- function(cov.test, covToTest, covToTransform, paramToUse){
r <- NULL
('r <- Rsmlx:::covariate.test(cov.test, covToTest, covToTransform, paramToUse)')
return(r)
}
Rsmlx.correlationModelSelection <- function(e0 = NULL, pen.coef = NULL, nb.model = 1, corr0 = NULL,
seqmod = TRUE, prior = NULL, cor.list = NULL, weight = NULL){
r <- NULL
('r <- Rsmlx:::correlationModelSelection(e0,pen.coef,nb.model,corr0,seqmod,prior,cor.list,weight)')
return(r)
}
mlx.stepAIC <- function(object, scope, scale = 0, direction = c("both", "backward",
"forward"), trace = 1, keep = NULL, steps = 1000, use.start = FALSE,
k = 2, weight = NULL){
r <- NULL
('r <- Rsmlx:::mlx.stepAIC(object,scope,scale,direction,trace,keep,steps,use.start,k,weight)')
return(r)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.