R/lixoftConnectors_Rsmlx_Functions.R

Defines functions mlx.stepAIC Rsmlx.correlationModelSelection Rsmlx.covariate.test Rsmlx.errorModelSelection Rsmlx.def.variable Rsmlx.buildmlx.check Rsmlx.prcheck Rsmlx.covariateModelSelection Rsmlx.formatErrorModel Rsmlx.formatCovariateModel Rsmlx.sortCov Rsmlx.correlationTest Rsmlx.formatLL Rsmlx.compute.criterion Rsmlx.p.weight mlx.getFormatting mlx.saveFormattedFile mlx.getLibraryModelName mlx.runLogLikelihoodEstimation mlx.runPopulationParameterEstimation mlx.saveProject mlx.setObservationDistribution mlx.setStandardErrorEstimationSettings mlx.setProjectSettings mlx.newProject mlx.setPopulationParameterEstimationSettings mlx.setLogLikelihoodEstimationSettings mlx.setGeneralSettings mlx.setErrorModel mlx.setData mlx.setCorrelationBlocks mlx.setMapping mlx.getMapping mlx.setIndividualParameterModel mlx.setCovariateModel mlx.computePredictions mlx.setConditionalModeEstimationSettings mlx.setConditionalDistributionSamplingSettings mlx.setScenario mlx.loadProject mlx.setPopulationParameterInformation mlx.setInitialEstimatesToLastEstimates mlx.runScenario mlx.runStandardErrorEstimation mlx.runConditionalModeEstimation mlx.runConditionalDistributionSampling mlx.getStandardErrorEstimationSettings mlx.getSimulatedRandomEffects mlx.getSimulatedIndividualParameters mlx.getProjectSettings mlx.getPopulationParameterEstimationSettings mlx.getLogLikelihoodEstimationSettings mlx.getIndividualParameterModel mlx.getGeneralSettings mlx.getEstimatedStandardErrors mlx.getEstimatedRandomEffects mlx.getEstimatedIndividualParameters mlx.getDemoPath mlx.getData mlx.getAllCovariateInformation mlx.getCovariateInformation mlx.getContinuousObservationModel mlx.getConditionalModeEstimationSettings mlx.getConditionalDistributionSamplingSettings mlx.getEstimatedPopulationParameters mlx.getEstimatedLogLikelihood mlx.getLaunchedTasks mlx.getObservationInformation mlx.getScenario mlx.getPopulationParameterInformation mlx.getSAEMiterations mlx.getTests mlx.getStructuralModel mlx.setStructuralModel mlx.initializeLixoftConnectors mlx.getLixoftConnectorsState .hiddenCall

.hiddenCall <- function(command){
  eval.parent(parse(text = command))
}

mlx.getLixoftConnectorsState <- function(quietly = TRUE) {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getLixoftConnectorsState(quietly = ',quietly,')'))
  return(r)
}

mlx.initializeLixoftConnectors <- function(software = "monolix", path="", force = TRUE) {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::initializeLixoftConnectors(software = "',software ,'",
                     path = "',path,'", force=',force,')'))
  return(invisible(r))
}

mlx.setStructuralModel <- function(modelFile = NULL) {
  .hiddenCall(paste0('r <- lixoftConnectors::setStructuralModel(modelFile = "',modelFile,'")'))
}

mlx.getStructuralModel <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getStructuralModel()'))
  return(r)
}

mlx.getTests <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getTests()'))
  return(r)
}

mlx.getSAEMiterations <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getSAEMiterations()'))
  return(r)
}

mlx.getPopulationParameterInformation <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getPopulationParameterInformation()'))
  return(r)
}

mlx.getScenario <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getScenario()'))
  return(r)
}


mlx.getObservationInformation <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getObservationInformation()'))
  return(r)
}

mlx.getLaunchedTasks <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getLaunchedTasks()'))
  return(r)
}

mlx.getEstimatedLogLikelihood <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getEstimatedLogLikelihood()'))
  for (k in 1:length(r)) {
    if (is.list(r[[k]]))
      r[[k]] <- unlist(r[[k]])
    if (!is.null(r[[k]]['-2LL']))
      names(r[[k]]) <- gsub("-2LL", "OFV", names(r[[k]]))
    i0 <- which(names(r[[k]])=='chosenDegree')
    if (length(i0)>0)
      r[[k]] <- r[[k]][-i0]
  }
  return(r)
}

mlx.getEstimatedPopulationParameters <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getEstimatedPopulationParameters()'))
  return(r)
}

mlx.getConditionalDistributionSamplingSettings <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getConditionalDistributionSamplingSettings()'))
  return(r)
}

mlx.getConditionalModeEstimationSettings <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getConditionalModeEstimationSettings()'))
  return(r)
}

mlx.getContinuousObservationModel <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getContinuousObservationModel()'))
  return(r)
}

mlx.getCovariateInformation <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getCovariateInformation()'))
  sn <- setdiff(r$name,names(r$covariate))
  if (length(sn)>0) {
    d <- mlx.getProjectSettings()$directory
    pind <- read.csv(file.path(d,"IndividualParameters/estimatedIndividualParameters.txt"))
    if (all(sn %in% names(pind)))
      r$covariate <- merge(r$covariate,pind[,c("id",sn)],by="id")
  }
  j.strat <- grep("stratification",r$type)
  if (length(j.strat) > 0) {
    strat.cov <- r$name[j.strat]
    r$covariate <- r$covariate %>% select(-strat.cov)
    r$type <- r$type[-j.strat]
    r$name <- r$name[-j.strat]
  }

  return(r)
}

mlx.getAllCovariateInformation <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getCovariateInformation()'))
  return(r)
}

mlx.getData <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getData()'))
  return(r)
}
mlx.getDemoPath <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getDemoPath()'))
  return(r)
}
mlx.getEstimatedIndividualParameters <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getEstimatedIndividualParameters()'))
  return(r)
}
mlx.getEstimatedRandomEffects <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getEstimatedRandomEffects()'))
  return(r)
}
mlx.getEstimatedStandardErrors <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getEstimatedStandardErrors()'))
  # for (k in 1:length(r)) {
  #   if (is.list(r[[k]]))
  #     r[[k]] <- unlist(r[[k]])
  # }
  return(r)
}
mlx.getGeneralSettings <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getGeneralSettings()'))
  return(r)
}
mlx.getIndividualParameterModel <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getIndividualParameterModel()'))
  return(r)
}
mlx.getLogLikelihoodEstimationSettings <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getLogLikelihoodEstimationSettings()'))
  return(r)
}
mlx.getPopulationParameterEstimationSettings <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getPopulationParameterEstimationSettings()'))
  return(r)
}
mlx.getProjectSettings <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getProjectSettings()'))
  return(r)
}
mlx.getSimulatedIndividualParameters <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getSimulatedIndividualParameters()'))
  if (is.factor(r$rep))  r$rep <- as.numeric(as.character(r$rep))
  return(r)
}
mlx.getSimulatedRandomEffects <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getSimulatedRandomEffects()'))
  if (is.factor(r$rep))  r$rep <- as.numeric(as.character(r$rep))
  return(r)
}
mlx.getStandardErrorEstimationSettings <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getStandardErrorEstimationSettings()'))
  return(r)
}
mlx.runConditionalDistributionSampling <- function() {
  .hiddenCall(paste0('r <- lixoftConnectors::runConditionalDistributionSampling()'))
}
mlx.runConditionalModeEstimation <- function() {
  .hiddenCall(paste0('r <- lixoftConnectors::runConditionalModeEstimation()'))
}
mlx.runStandardErrorEstimation <- function(linearization=NULL) {
  .hiddenCall(paste0('r <- lixoftConnectors::runStandardErrorEstimation(linearization = ',linearization,')'))
}
mlx.runScenario <- function() {
  .hiddenCall('r <- lixoftConnectors::runScenario()')
}
mlx.setInitialEstimatesToLastEstimates <- function(fixedEffectsOnly = F) {
  .hiddenCall(paste0('r <- lixoftConnectors::setInitialEstimatesToLastEstimates(fixedEffectsOnly=fixedEffectsOnly)'))
}

mlx.setPopulationParameterInformation <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setPopulationParameterInformation(a)'))
}

mlx.loadProject <- function(projectFile=NULL) {
  .hiddenCall(paste0('r <- lixoftConnectors::loadProject(projectFile = "',projectFile,'")'))
}

mlx.setScenario <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setScenario(a)'))
}
mlx.setConditionalDistributionSamplingSettings <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setConditionalDistributionSamplingSettings(a)'))
}
mlx.setConditionalModeEstimationSettings <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setConditionalModeEstimationSettings(a)'))
}
mlx.computePredictions <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::computePredictions(a)'))
}
mlx.setCovariateModel <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setCovariateModel(a)'))
}
mlx.setIndividualParameterModel <- function(a) {
  .hiddenCall(paste0('lixoftConnectors::setIndividualParameterModel(a)'))
}

mlx.getMapping <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getMapping()'))
  return(r)
}

mlx.setMapping <- function(a) {
  .hiddenCall(paste0('lixoftConnectors::setMapping(a)'))
}

mlx.setCorrelationBlocks <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setCorrelationBlocks(a)'))
}
mlx.setData <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setData(a)'))
}
mlx.setErrorModel <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setErrorModel(a)'))
}
mlx.setGeneralSettings <- function(g) {
  .hiddenCall(paste0('r <- lixoftConnectors::setGeneralSettings(g)'))
}
mlx.setLogLikelihoodEstimationSettings <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setLogLikelihoodEstimationSettings(a)'))
}
mlx.setPopulationParameterEstimationSettings <- function(g) {
  .hiddenCall(paste0('r <- lixoftConnectors::setPopulationParameterEstimationSettings(g)'))
}
mlx.newProject <- function(data = NULL, modelFile = NULL) {
  .hiddenCall(paste0('r <- lixoftConnectors::newProject(data = data, modelFile = modelFile)'))
}

mlx.setProjectSettings <- function(directory = NULL, dataandmodelnexttoproject = NULL) {
  if (!is.null(directory)) {
    .hiddenCall(paste0('r <- lixoftConnectors::setProjectSettings(directory = directory)'))
  } else {
    if (!is.null(dataandmodelnexttoproject)) {
      .hiddenCall(paste0('r <- lixoftConnectors::setProjectSettings(dataandmodelnexttoproject = dataandmodelnexttoproject)'))
    }
  }
}
mlx.setStandardErrorEstimationSettings  <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setStandardErrorEstimationSettings (a)'))
}
mlx.setObservationDistribution  <- function(a) {
  .hiddenCall(paste0('r <- lixoftConnectors::setObservationDistribution (a)'))
}


mlx.saveProject <- function(projectFile=NULL) {
  if (is.null(projectFile)) {
    .hiddenCall(paste0('r <- lixoftConnectors::saveProject()'))
  } else {
    .hiddenCall(paste0('r <- lixoftConnectors::saveProject(projectFile = projectFile)'))
  }
}

mlx.runPopulationParameterEstimation <- function(parameters=NULL) {
  r <- NULL
  if (!is.null(parameters))
    .hiddenCall(paste0('r <- lixoftConnectors::runPopulationParameterEstimation(parameters=parameters)'))
  else
    .hiddenCall(paste0('r <- lixoftConnectors::runPopulationParameterEstimation()'))
  .hiddenCall(paste0('r0 <- lixoftConnectors::runConditionalModeEstimation()'))
  return(r)
}

mlx.runLogLikelihoodEstimation <- function(linearization = FALSE) {
  .hiddenCall(paste0('r <- lixoftConnectors::runLogLikelihoodEstimation(linearization = linearization)'))
}

mlx.getLibraryModelName <- function(library) {
  .hiddenCall(paste0('r <- lixoftConnectors::getLibraryModelName(library)'))
}

mlx.saveFormattedFile <- function(path) {
  .hiddenCall(paste0('r <- lixoftConnectors::getFormatting()'))
  .hiddenCall(paste0('r$formattedFile <- path'))
  .hiddenCall(paste0('do.call(lixoftConnectors::formatData, r)'))
}

mlx.getFormatting <- function() {
  r <- NULL
  .hiddenCall(paste0('r <- lixoftConnectors::getFormatting()'))
  return(r)
}

Rsmlx.p.weight <- function(p,pw,coef){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::p.weight(p=p,pw=pw,coef=coef)'))
  return(r)
}

print_result <- function (print, summary.file, to.cat = NULL, to.print = NULL)
{
  if (file.exists(summary.file))
    sink(summary.file, append = TRUE)
  else sink(summary.file)
  if (!is.null(to.cat))
    cat(to.cat)
  if (!is.null(to.print))
    print(to.print)
  sink()
  if (print) {
    if (!is.null(to.cat))
      cat(to.cat)
    if (!is.null(to.print))
      print(to.print)
  }
}

Rsmlx.compute.criterion <- function(criterion, method.ll, weight = NULL, pen.coef = NULL){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::compute.criterion(criterion,method.ll,weight,pen.coef)'))
  return(r)
}

Rsmlx.formatLL <- function(ll,criterion,cr,is.weight,is.prior=F){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::formatLL(ll,criterion,cr,is.weight,is.prior)'))
  return(r)
}

Rsmlx.correlationTest <- function(project = NULL, n.sample = NULL, plot = FALSE){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::correlationTest(project,n.sample,plot)'))
  return(r)
}

Rsmlx.sortCov <- function(r,cov.ini){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::sortCov(r,cov.ini)'))
  return(r)
}

Rsmlx.formatCovariateModel <- function(m,cov.ini=NULL){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::formatCovariateModel(m,cov.ini)'))
  return(r)
}

Rsmlx.formatErrorModel <- function(m){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::formatErrorModel(m)'))
  return(r)
}

Rsmlx.covariateModelSelection <- function(pen.coef = NULL, weight = 1, n.full = 10, nb.model = 1,
                                          covToTransform = NULL, covFix = NULL, direction = "both",
                                          paramToUse = "all", steps = 1000, p.max = 1, sp0 = NULL,
                                          iter = 1, correlation.model = NULL, eta = NULL){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::covariateModelSelection(pen.coef,weight,n.full,nb.model,covToTransform,covFix,direction,paramToUse,steps,p.max,sp0,iter,correlation.model,eta)'))
  return(r)
}

Rsmlx.prcheck <- function(project, f = NULL, settings = NULL, model = NULL,
                          paramToUse = NULL, parameters = NULL, level = NULL, tests = NULL,
                          nboot = NULL, method = NULL){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::prcheck(project,f,settings,model,paramToUse,parameters,level,tests,nboot,method)'))
  return(r)
}

Rsmlx.buildmlx.check <- function(project, final.project, model, paramToUse, covToTest,
                                 covToTransform, center.covariate, criterion, linearization,
                                 ll, test, direction, steps, max.iter, explor.iter, seq.cov,
                                 seq.cov.iter, seq.corr, p.max, p.min, print, nb.model, prior,
                                 weight, n.full){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::buildmlx.check(project, final.project, model, paramToUse, covToTest,
  covToTransform, center.covariate, criterion, linearization,
  ll, test, direction, steps, max.iter, explor.iter, seq.cov,
  seq.cov.iter, seq.corr, p.max, p.min, print, nb.model, prior,
  weight, n.full)'))
  return(r)
}

Rsmlx.def.variable <- function(weight = NULL, prior = NULL, criterion = NULL, fix.param0 = NULL,
                               fix.param1 = NULL){
  r <- NULL
  .hiddenCall(paste0('r <- Rsmlx:::def.variable(weight,prior,criterion,fix.param0,fix.param1)'))
  return(r)
}

Rsmlx.errorModelSelection <- function(project = NULL, pen.coef = NULL, nb.model = 1, f.min = 0.001){
  r <- NULL
  .hiddenCall(' r <- Rsmlx:::errorModelSelection(project,pen.coef,nb.model,f.min)')
  return(r)
}

Rsmlx.covariate.test <- function(cov.test, covToTest, covToTransform, paramToUse){
  r <- NULL
  .hiddenCall('r <- Rsmlx:::covariate.test(cov.test, covToTest, covToTransform, paramToUse)')
  return(r)
}

Rsmlx.correlationModelSelection <- function(e0 = NULL, pen.coef = NULL, nb.model = 1, corr0 = NULL,
                                            seqmod = TRUE, prior = NULL, cor.list = NULL, weight = NULL){
  r <- NULL
  .hiddenCall('r <- Rsmlx:::correlationModelSelection(e0,pen.coef,nb.model,corr0,seqmod,prior,cor.list,weight)')
  return(r)
}

mlx.stepAIC <- function(object, scope, scale = 0, direction = c("both", "backward",
                                                                "forward"), trace = 1, keep = NULL, steps = 1000, use.start = FALSE,
                        k = 2, weight = NULL){
  r <- NULL
  .hiddenCall('r <- Rsmlx:::mlx.stepAIC(object,scope,scale,direction,trace,keep,steps,use.start,k,weight)')
  return(r)
}

Try the LSAMBA package in your browser

Any scripts or data that you put into this service are public.

LSAMBA documentation built on June 8, 2025, 9:59 a.m.