Nothing
#' Fit a landmarking model using a linear mixed effects (LME) model for the longitudinal submodel
#'
#' This function is a helper function for `fit_LME_landmark`.
#'
#' @param data_long Data frame containing repeat measurement data and time-to-event data in long format.
#' @template x_L
#' @param standardise_time Boolean indicating whether to standardise the time variable by subtracting the mean
#' and dividing by the standard deviation (see Details section for more information)
#' @param cv_name Character string specifying the column name in `data_long` that indicates cross-validation fold
#' @template individual_id
#' @template fixed_effects
#' @template random_effects
#' @template fixed_effects_time
#' @template random_effects_time
#' @param random_slope_in_LME Boolean indicating whether to include a random slope in the LME model
#' @param random_slope_as_covariate Boolean indicating whether to include the random slope estimate from the LME model
#' as a covariate in the survival submodel.
#' @param lme_control Object created using `nlme::lmeControl()`, which will be passed to the `control` argument of the `lme` function
#' @return List containing elements:
#' `data_longitudinal`, `model_longitudinal`, `model_LME`, and `model_LME_standardise_time`.
#'
#' `data_longitudinal` has one row for each individual in the risk set at `x_L` and
#' contains the value of the covariates at the landmark time `x_L` of the `fixed_effects` using the LOCF model and
#' `random_effects` using the LME model.
#'
#' `model_longitudinal` indicates that the LME approach is used.
#'
#' `model_LME` contains the output from
#' the `lme` function from package `nlme`. For a model using cross-validation,
#' `model_LME` contains a list of outputs with each
#' element in the list corresponds to a different cross-validation fold.
#'
#' `model_LME_standardise_time` contains a list of two objects `mean_response_time` and `sd_response_time` if the parameter `standardise_time=TRUE` is used. This
#' is the mean and standard deviation used to normalise times when fitting the LME model.
#'
#' @details For an individual \eqn{i}, the LME model can be written as
#'
#' \deqn{Y_i = X_i \beta + Z_i U_i + \epsilon_i}
#'
#' where
#' * \eqn{Y_i} is the vector of outcomes at different time points for the individual
#' * \eqn{X_i} is the matrix of covariates for the fixed effects at these time points
#' * \eqn{\beta} is the vector of coefficients for the fixed effects
#' * \eqn{Z_i} is the matrix of covariates for the random effects
#' * \eqn{U_i} is the matrix of coefficients for the random effects
#' * \eqn{\epsilon_i} is the error term, typically from N(0, \eqn{\sigma})
#'
#' By using an LME model to fit repeat measures data we can allow measurements from the same individuals to be
#' more similar than measurements from different individuals. This is done through the random intercept and/or
#' random slope.
#'
#' Extending this model to the case where there are multiple random effects, denoted \eqn{k}, we have
#'
#' \deqn{Y_{ik} = X_{ik} \beta_k + Z_{ik} U_{ik} + \epsilon_{ik}}
#'
#' Using this model we can allow a certain covariance structure within the random effects term \eqn{U_{ik}}, for example a sample from the
#' multivariate normal (MVN) distribution \eqn{MVN(0,\Sigma_u)}. This covariance structure means the value of one random effects variable informs about the
#' value of the other random effects variables, leading to more accurate predictions and allowing there to be missing data in the
#' random effects variables.
#'
#' The function \code{fit_LME_landmark} uses a unstructured covariance for the random effects when fitting the LME model (i.e. no constraints are imposed on the values).
#' To fit the LME model the function \code{lme} from the package \code{nlme} is used.
#' The fixed effects are calculated as the LOCF for the variables \code{fixed_effects} at the landmark age \code{x_L} and the random effects
#' are those stated in \code{random_effects} and at times \code{random_effects_time}. The random intercept is always included in the LME model.
#' Additionally, the random slope can be included in the LME model using the parameter `random_slope_in_LME=TRUE`. The model is used to predict the
#' values of the random effects at the landmark time \code{x_L},
#' and these are used as predictors in the survival model along with the LOCF values of the fixed effects.
#' Additionally, the estimated value of the random slope can
#' be included as predictors in the survival model using the parameter `random_slope_as_covariate=TRUE`.
#'
#' It is important to distinguish between the validation set and the development set for fitting the LME model. The development set includes
#' all the repeat measurements (including those after the landmark age \code{x_L}). Conversely, the validation set only includes
#' the repeat measurements recorded up until and including the landmark age \code{x_L}.
#'
#' There is an important consideration about fitting the linear mixed effects model. As the variable \code{random_effects_time}
#' gets further from 0, the random effects coefficients get closer to 0. This causes computational issues
#' as the elements in the covariance matrix of the random effects, \eqn{\Sigma_u}, are constrained to
#' be greater than 0. Using parameter \code{standard_time=TRUE} can prevent this issue by standardising the
#' time variables to ensure that the \code{random_effects_time} values are not too close to 0.
#'
#' The LOCF values for the fixed effects and the prediction of the random effects at the landmark age
#' are used as the covariates for the survival submodel, in addition to the estimated random slopes
#' if option `random_effects_as_covariate` is selected.
#'
#' @export
fit_LME_longitudinal <- function(data_long,
x_L,
fixed_effects,
random_effects,
fixed_effects_time,
random_effects_time,
standardise_time = FALSE,
random_slope_in_LME = TRUE,
random_slope_as_covariate = FALSE,
cv_name = NA,
individual_id,
lme_control = nlme::lmeControl()) {
call <- match.call()
if (!(is.data.frame(data_long))) {
stop("data_long should be a dataframe")
}
if (!(is.numeric(x_L))) {
stop("'x_L' should be numeric")
}
for (col in c(
fixed_effects,
random_effects,
fixed_effects_time,
random_effects_time,
individual_id
)) {
if (!(col %in% names(data_long))) {
stop(col, " is not a column name in data_long")
}
}
if (!is.na(cv_name)) {
if (!(cv_name %in% names(data_long))) {
stop(cv_name, " is not a column name in data_long")
}
if (any(is.na(data_long[[cv_name]]))) {
stop("The column ", cv_name, " contains NA values")
}
}
if (is.na(cv_name)) {
data_long[["cross_validation_number"]] <-
1
cv_name <- "cross_validation_number"
}
if (!(length(fixed_effects_time) %in% c(length(fixed_effects), 1))) {
stop("Length of fixed_effects_time should be equal to length of fixed_effects or 1")
}
if (length(fixed_effects_time) == 1) {
fixed_effects_time <-
rep(fixed_effects_time, times = length(fixed_effects))
}
if (!(length(random_effects_time) %in% c(length(random_effects), 1))) {
stop("Length of random_effects_time should be equal to length of random_effects or 1")
}
if (length(random_effects_time) == 1) {
random_effects_time <-
rep(random_effects_time, times = length(random_effects))
}
if (dim(
return_ids_with_LOCF(
data_long = data_long,
individual_id = individual_id,
x_L = x_L,
covariates = fixed_effects,
covariates_time = fixed_effects_time
)
)[1] != dim(data_long)[1]) {
stop(
"data_long contains individuals that do not have a LOCF for all fixed_effects. Use function return_ids_with_LOCF to remove these individuals from the dataset data_long."
)
}
data_long[[individual_id]] <-
as.factor(data_long[[individual_id]])
data_LOCF <- data_long
data_LME <- data_long
#Pick out LOCF for each variable
LOCF_values_by_variable <-
lapply(1:length(c(fixed_effects, random_effects)), function(x) {
return_LOCF_by_variable(
data_long = data_LOCF,
i = x,
covariates = c(fixed_effects, random_effects),
covariates_time = c(fixed_effects_time, random_effects_time),
individual_id = individual_id,
x_L =
x_L
)
})
data_LOCF <- Reduce(merge, LOCF_values_by_variable)
data_LOCF <-
dplyr::left_join(data_LOCF, unique(data_long[c(individual_id, cv_name)]), by =
individual_id)
#Create validation and development dataset
#####
response_type <-
Reduce(c, lapply(random_effects, function(i) {
rep(i, dim(data_LME)[1])
}))
response <-
as.numeric(Reduce(c, lapply(1:length(random_effects), function(i) {
data_LME[, random_effects[i]]
})))
response_time <-
as.numeric(Reduce(c, lapply(1:length(random_effects), function(i) {
data_LME[, random_effects_time[i]]
})))
data_fixed_effects <-
do.call("rbind", replicate(
n = length(random_effects),
data_LME[, c(individual_id, fixed_effects, cv_name)],
simplify = FALSE
))
data_LME <-
data.frame(data_fixed_effects, response_type, response, response_time)
if (standardise_time == TRUE) {
mean_response_time <- mean(data_LME$response_time, na.rm = TRUE)
sd_response_time <- stats::sd(data_LME$response_time, na.rm = TRUE)
} else{
mean_response_time <- 0
sd_response_time <- 1
}
data_LME$response_time <-
(data_LME$response_time - mean_response_time) / sd_response_time
x_L <- (x_L - mean_response_time) / sd_response_time
standardise_time <-
list(mean_response_time = mean_response_time,
sd_response_time = sd_response_time)
data_LME_model_val <- data_LME[data_LME$response_time <= x_L, ]
data_LME_model_dev <- data_LME[!is.na(data_LME$response), ]
if (length(random_effects) == 1) {
formula_weights <- NULL
if (random_slope_in_LME == FALSE) {
formula_random <- as.formula(paste0(" ~ 1 |", individual_id))
}
else{
formula_random <-
as.formula(paste0(" ~ 1 + response_time |", individual_id))
}
formula_fixed <-
as.formula(paste0(c(
paste0("response~ 1 "), c("response_time", fixed_effects)
), collapse = "+"))
}
if (length(random_effects) > 1) {
formula_weights <- nlme::varIdent(form = ~ 1 | "response_type")
if (random_slope_in_LME == FALSE) {
formula_random <-
as.formula(paste0(" ~ -1 + response_type | ", individual_id))
}
else{
formula_random <-
as.formula(paste0(
" ~-1 + response_type + response_type:response_time | ",
individual_id
))
}
formula_fixed <- as.formula(paste0(c(
paste0(c(
paste0("response~-1+ response_type"),
c("response_time", fixed_effects)
), collapse = "+"),
paste0(paste0(paste0(
c("response_time", fixed_effects), ":response_type"
)), collapse = "+")
), collapse = "+"))
}
cv_numbers <- unique(data_LME_model_dev[[cv_name]])
model_LME <- lapply(cv_numbers, function(cv_number) {
if (length(cv_numbers) > 1) {
data_dev_cv <-
data_LME_model_dev[data_LME_model_dev[[cv_name]] != cv_number, ]
}
if (length(cv_numbers) == 1) {
data_dev_cv <- data_LME_model_dev
}
model_LME_cv <- nlme::lme(
fixed = formula_fixed,
random = formula_random,
data = data_dev_cv,
weights = formula_weights,
control = lme_control
)
model_LME_cv$call$fixed <- formula_fixed
model_LME_cv
})
names(model_LME) <- cv_numbers
response_type <-
Reduce(c, lapply(random_effects, function(i) {
rep(i, dim(data_LOCF)[1])
}))
response <- as.numeric(rep(NA, length(response_type)))
response_time <- as.numeric(rep(x_L, length(response_type)))
data_fixed_effects <-
do.call("rbind", replicate(
n = length(random_effects),
data_LOCF[, c(individual_id, fixed_effects, cv_name)],
simplify = FALSE
))
data_LOCF_model_val <-
data.frame(data_fixed_effects,
response_type,
response,
response_time,
predict = 1)
data_LME_model_val$predict <- 0
data_LME_model_val <-
dplyr::bind_rows(data_LOCF_model_val, data_LME_model_val)
data_LME <-
lapply(cv_numbers, function(cv_number) {
data_LME_model_val_cv <-
data_LME_model_val[which(data_LME_model_val[[cv_name]] == cv_number),]
data_LME_model_val_cv <- droplevels(data_LME_model_val_cv)
model_LME_cv <- model_LME[[as.character(cv_number)]]
response_predictions <-
which(data_LME_model_val_cv$predict == 1)
mixoutsamp_LME_model_val_cv <-
mixoutsamp(model = model_LME_cv,
newdata = data_LME_model_val_cv)
data_LME_model_val_cv <-
mixoutsamp_LME_model_val_cv$preddata[response_predictions,][, c(individual_id,
fixed_effects,
cv_name,
"response_type",
"fitted")]
data_LME_model_val_cv <-
stats::reshape(
data_LME_model_val_cv,
timevar = "response_type",
idvar = c(individual_id, fixed_effects, cv_name),
direction = "wide"
)
for (name in random_effects) {
names(data_LME_model_val_cv)[grep(paste0("fitted.", name), names(data_LME_model_val_cv))] <-
name
}
if (random_slope_as_covariate == TRUE) {
data_LME_model_val_cv <- dplyr::left_join(data_LME_model_val_cv,
mixoutsamp_LME_model_val_cv$random[, c(
individual_id,
paste0("reffresponse_type", random_effects, ":response_time")
)],
by = individual_id)
for (name in paste0(random_effects)) {
names(data_LME_model_val_cv)[grep(
paste0("reffresponse_type", name, ":response_time"),
names(data_LME_model_val_cv)
)] <- paste0(name, "_slope")
}
}
data_LME_model_val_cv[[as.character(cv_name)]] <- cv_number
data_LME_model_val_cv
})
data_LME <- do.call("rbind", data_LME)
data_LME <-
data_LME[match(unique(data_long[[individual_id]][data_long[[individual_id]] %in% data_LME[[individual_id]]]), data_LME[[individual_id]]), ]
data_LME <-
data_LME[, order(match(names(data_LME), names(data_long)))]
rownames(data_LME) <- NULL
if (length(cv_numbers) == 1) {
model_LME <- model_LME[[1]]
}
if (length(unique(data_long[[cv_name]])) == 1) {
data_LME[[cv_name]] <- NULL
}
return(
list(
data_longitudinal = data_LME,
model_longitudinal = "LME",
call = call,
model_LME = model_LME,
model_LME_standardise_time = standardise_time
)
)
}
#' Fit a landmarking model using a linear mixed effects (LME) model for the longitudinal submodel
#'
#' This function performs the two-stage landmarking analysis.
#'
#' @param data_long Data frame or list of data frames each corresponding to a landmark age `x_L` (each element of the list must be named the value of `x_L` it corresponds to).
#' Each data frame contains repeat measurements data and time-to-event data in long format.
#' @template x_L
#' @template x_hor
#' @param standardise_time Boolean indicating whether to standardise the time variables (`fixed_effects_time` and `random_effects_time`) by subtracting the mean
#' and dividing by the standard deviation (see Details section for more information)
#' @template event_status
#' @template event_time
#' @template k
#' @template cross_validation_df
#' @template individual_id
#' @template fixed_effects
#' @template random_effects
#' @template fixed_effects_time
#' @template random_effects_time
#' @param random_slope_in_LME Boolean indicating whether to include a random slope in the LME model
#' @param random_slope_as_covariate Boolean indicating whether to include the random slope estimate from the LME model
#' as a covariate in the survival submodel.
#' @param lme_control Object created using `nlme::lmeControl()`, which will be passed to the `control` argument of the `lme`
#' function
#' @template b
#' @template survival_submodel
#' @return List containing containing information about the landmark model at each of the landmark times.
#' Each element of this list is named the corresponding landmark time, and is itself a list containing elements:
#' `data`, `model_longitudinal`, `model_LME`, `model_LME_standardise_time`, `model_survival`, and `prediction_error`.
#'
#' `data` has one row for each individual in the risk set at `x_L` and
#' contains the value of the `fixed_effects` using the LOCF approach and predicted values of the
#' `random_effects` using the LME model at the landmark time `x_L`. It also includes the predicted
#' probability that the event of interest has occurred by time \code{x_hor}, labelled as \code{"event_prediction"}.
#' There is one row for each individual.
#'
#' `model_longitudinal` indicates that the longitudinal approach is LME.
#'
#' `model_LME` contains the output from
#' the `lme` function from package `nlme`. For a model using cross-validation,
#' `model_LME` contains a list of outputs with each
#' element in the list corresponds to a different cross-validation fold.
#' `prediction_error` contains a list indicating the c-index and Brier score at time `x_hor` and their standard errors if parameter `b` is used.
#' For more information on how the prediction error is calculated
#' please see `?get_model_assessment` which is the function used to do this within `fit_LME_landmark`.
#'
#' `model_LME_standardise_time` contains a list of two objects `mean_response_time` and `sd_response_time` if the parameter `standardise_time=TRUE` is used. This
#' is the mean and standard deviation use to normalise times when fitting the LME model.
#'
#' `model_survival` contains the outputs from
#' the survival submodel functions, including the estimated parameters of the model. For a model using cross-validation,
#' `model_survival` will contain a list of outputs with each
#' element in the list corresponding to a different cross-validation fold.
#' `model_survival` contains the outputs from the function used to fit the survival submodel, including the estimated parameters of the model.
#' For a model using cross-validation, `model_survival` contains a list of outputs with each
#' element in the list corresponding to a different cross-validation fold. For more information on how the survival model is fitted
#' please see `?fit_survival_model` which is the function used to do this within `fit_LME_landmark`.
#'
#' `prediction_error` contains a list indicating the c-index and Brier score at time `x_hor` and their standard errors if parameter `b` is used.
#' @details Firstly, this function selects the individuals in the risk set at the landmark time \code{x_L}.
#' Specifically, the individuals in the risk set are those that have entered the study before the landmark age
#' (there is at least one observation for each of the \code{fixed_effects} and\code{random_effects} on or before \code{x_L}) and
#' exited the study on after the landmark age (\code{event_time}
#' is greater than \code{x_L}).
#'
#' Secondly, if the option to use cross validation
#' is selected (using either parameter `k` or `cross_validation_df`), then an extra column `cross_validation_number` is added with the
#' cross-validation folds. If parameter `k` is used, then the function `add_cv_number`
#' randomly assigns these folds. For more details on this function see `?add_cv_number`.
#' If the parameter `cross_validation_df` is used, then the folds specified in this data frame are added.
#' If cross-validation is not selected then the landmark model is
#' fit to the entire group of individuals in the risk set (this is both the training and test dataset).
#'
#' Thirdly, the landmark model is then fit to each of the training data. There are two parts to fitting the landmark model: using the longitudinal data and using the survival data.
#' Using the longitudinal data is the first stage and is performed using `fit_LME_longitudinal`. See `?fit_LME_longitudinal` more for information about this function.
#' Using the survival data is the second stage and is performed using `fit_survival_model`. See `?fit_survival_model` more for information about this function.
#'
#' Fourthly, the performance of the model is then assessed on the set of predictions
#' from the entire set of individuals in the risk set by calculating Brier score and C-index.
#' This is performed using `get_model_assessment`. See `?get_model_assessment` more for information about this function.
#'
#' @author Isobel Barrott \email{isobel.barrott@@gmail.com}
#' @examples \donttest{
#' library(Landmarking)
#' data(data_repeat_outcomes)
#' data_model_landmark_LME <-
#' fit_LME_landmark(
#' data_long = data_repeat_outcomes,
#' x_L = c(60, 61),
#' x_hor = c(65, 66),
#' k = 10,
#' fixed_effects = c("ethnicity", "smoking", "diabetes"),
#' fixed_effects_time = "response_time_sbp_stnd",
#' random_effects = c("sbp_stnd", "tchdl_stnd"),
#' random_effects_time = c("response_time_sbp_stnd", "response_time_tchdl_stnd"),
#' individual_id = "id",
#' standardise_time = TRUE,
#' lme_control = nlme::lmeControl(maxIter = 100, msMaxIter = 100),
#' event_time = "event_time",
#' event_status = "event_status",
#' survival_submodel = "cause_specific"
#' )
#' }
#' @importFrom stats as.formula
#' @importFrom prodlim Hist
#' @export
fit_LME_landmark <- function(data_long,
x_L,
x_hor,
fixed_effects,
random_effects,
fixed_effects_time,
random_effects_time,
individual_id,
k,
cross_validation_df,
random_slope_in_LME = TRUE,
random_slope_as_covariate = TRUE,
standardise_time = FALSE,
lme_control = nlme::lmeControl(),
event_time,
event_status,
survival_submodel = c("standard_cox", "cause_specific", "fine_gray"),
b) {
call <- match.call()
survival_submodel <- match.arg(survival_submodel)
#Checks
if (missing(k)) {
k_add <- FALSE
}
else{
k_add <- TRUE
if (!(is.numeric(k))) {
stop("k should be numeric")
}
}
if (missing(cross_validation_df)) {
cross_validation_df_add <- FALSE
}
else{
cross_validation_df_add <- TRUE
if (class(cross_validation_df) == "list") {
if (!all(x_L %in% names(cross_validation_df))) {
stop(
"The names of elements in cross_validation_df list should be the landmark times in x_L"
)
}
if (any(Reduce("c", lapply(cross_validation_df, function(x) {
any(duplicated(dplyr::distinct(x[, c(individual_id, "cross_validation_number")])[, individual_id]))
})))) {
stop("Cross validation folds should be the same for the same individual")
}
}
else if (class(cross_validation_df) == "data.frame") {
if (any(duplicated(dplyr::distinct(cross_validation_df[, c(individual_id, "cross_validation_number")])[, individual_id]))) {
stop("Cross validation folds should be the same for the same individual")
}
}
else{
stop("cross_validation_df should be either a data frame or a list")
}
}
if (k_add == TRUE &&
cross_validation_df_add == TRUE) {
stop("Either use parameter k or cross_validation_df but not both")
}
if (k_add == FALSE &&
cross_validation_df_add == FALSE) {
cv_name <- NA
} else{
cv_name <- "cross_validation_number"
}
if (!(length(fixed_effects_time) %in% c(length(fixed_effects), 1))) {
stop("Length of fixed_effects_time should be equal to length of fixed_effects or 1")
}
if (length(fixed_effects_time) == 1) {
fixed_effects_time <-
rep(fixed_effects_time, times = length(fixed_effects))
}
if (!(length(random_effects_time) %in% c(length(random_effects), 1))) {
stop("Length of random_effects_time should be equal to length of random_effects or 1")
}
if (length(random_effects_time) == 1) {
random_effects_time <-
rep(random_effects_time, times = length(random_effects))
}
if (length(x_L) != length(x_hor)) {
stop("Length of x_L should be the same as length of x_hor")
}
if (!(is.data.frame(data_long) ||
is.list(data_long))) {
stop("data_long should be a list or data.frame")
}
if (is.data.frame(data_long)) {
data_long <- lapply(x_L, function(x_l) {
data_long
})
names(data_long) <- x_L
}
if (is.list(data_long)) {
if (!setequal(names(data_long), x_L)) {
stop("Names of elements in data_long should be landmark ages x_L")
}
}
if (missing(b)) {
b <- NA
}
#Fit each landmark model
data_long_x_L <- lapply(1:length(x_L), function(i) {
x_l <- x_L[i]
x_h <- x_hor[i]
data_long_x_l <- data_long[[as.character(x_l)]]
if (!is.null(levels(data_long_x_l[[event_status]]))) {
data_long_x_l[[event_status]] <-
as.numeric(levels(data_long_x_l[[event_status]]))[data_long_x_l[[event_status]]]
}
if (survival_submodel %in% c("cause_specific", "fine_gray")) {
if (!(setequal(data_long_x_l[[event_status]], 0:2))) {
stop(
"event_status column should contain only values 0, 1, and 2 for cause_specific or fine_gray survival submodel,
or values 0 and 1 for standard_cox survival submodel"
)
}
}
if (survival_submodel %in% c("standard_cox")) {
if (!(setequal(data_long_x_l[[event_status]], 0:1))) {
stop(
"event_status column should contain only values 0, 1, and 2 for cause_specific or fine_gray survival submodel,
or values 0 and 1 for standard_cox survival submodel"
)
}
}
if (!all(is.numeric(x_l))) {
stop("'x_L' should be numeric")
}
if (!all(is.numeric(x_h))) {
stop("'x_hor' should be numeric")
}
for (col in c(
fixed_effects,
fixed_effects_time,
random_effects,
random_effects_time,
individual_id,
event_time,
event_status
)) {
if (!(col %in% names(data_long_x_l))) {
stop(col, " is not a column name in data_long")
}
}
data_long_x_l[[individual_id]] <-
as.factor(data_long_x_l[[individual_id]])
#Pull out individuals in the risk set
data_long_x_l_risk_set <-
return_ids_with_LOCF(
data_long = data_long_x_l,
individual_id = individual_id,
x_L = x_l,
covariates = fixed_effects,
covariates_time = fixed_effects_time
)
data_long_x_l_risk_set <-
data_long_x_l_risk_set[data_long_x_l_risk_set[[event_time]] > x_l,]
n <-
length(unique(data_long_x_l[[individual_id]])) - length(unique(data_long_x_l_risk_set[[individual_id]]))
if (n >= 1) {
warning(
n,
" individuals have been removed from the model building as they are not in the risk set at landmark age ",
x_l
)
}
data_long_x_l <- data_long_x_l_risk_set
#Censor at the time horizon
data_long_x_l[[event_status]][data_long_x_l[[event_time]] > x_h] <-
0
data_long_x_l[[event_time]][data_long_x_l[[event_time]] > x_h] <-
x_h
if (cross_validation_df_add == TRUE) {
data_long_x_l <-
dplyr::left_join(data_long_x_l, cross_validation_df[[as.character(x_l)]][, c(individual_id, "cross_validation_number")], by =
individual_id)
}
return(data_long_x_l)
})
names(data_long_x_L) <- x_L
#Add cross-validation folds
if (k_add == TRUE) {
data_long_x_L_cv <-
add_cv_number(
data_long = Reduce("rbind", data_long_x_L),
individual_id = individual_id,
k = k
)
data_long_x_L <-
lapply(data_long_x_L, function(x) {
dplyr::left_join(x, dplyr::distinct(data_long_x_L_cv[, c(individual_id, "cross_validation_number")]), by =
individual_id)
}
)
}
out <- lapply(1:length(x_L), function(i) {
x_l <- x_L[i]
x_h <- x_hor[i]
data_long <- data_long_x_L[[as.character(x_l)]]
print(paste0("Fitting longitudinal submodel, landmark age ", x_l))
data_model_longitudinal <-
fit_LME_longitudinal(
data_long = data_long,
x_L = x_l,
fixed_effects =
fixed_effects,
random_effects =
random_effects,
fixed_effects_time =
fixed_effects_time,
random_effects_time =
random_effects_time,
random_slope_in_LME = random_slope_in_LME,
random_slope_as_covariate =
random_slope_as_covariate,
standardise_time =
standardise_time,
cv_name = cv_name,
individual_id =
individual_id,
lme_control = lme_control
)
print(paste0("Complete, landmark age ", x_l))
data_events <-
dplyr::distinct(data_long[, c(individual_id, event_status, event_time)])
data_longitudinal <-
dplyr::left_join(data_model_longitudinal$data_longitudinal,
data_events,
by = individual_id)
print(paste0("Fitting survival submodel, landmark age ", x_l))
if (random_slope_as_covariate) {
random_effects <- c(random_effects, paste0(random_effects, "_slope"))
}
data_model_survival <- fit_survival_model(
data = data_longitudinal,
individual_id = individual_id,
cv_name = cv_name,
covariates = c(fixed_effects, random_effects),
event_time = event_time,
event_status = event_status,
survival_submodel = survival_submodel,
x_hor = x_h
)
print(paste0("Complete, landmark age ", x_l))
prediction_error <-
get_model_assessment(
data = data_model_survival$data_survival,
individual_id = individual_id,
event_prediction = "event_prediction",
event_status = event_status,
event_time = event_time,
x_hor = x_h,
b = b
)
list(
data = data_model_survival$data_survival,
model_longitudinal = data_model_longitudinal$model_longitudinal,
model_LME = data_model_longitudinal$model_LME,
model_LME_standardise_time = data_model_longitudinal$model_LME_standardise_time,
model_survival = data_model_survival$model_survival,
prediction_error = prediction_error,
call = call
)
})
names(out) <- x_L
class(out) <- "landmark"
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.