Nothing
###########################################################################
# deburn #
# #
# The purpose of deburn() is to remove the user-specified burn-in from an #
# object of class demonoid. #
###########################################################################
deburn <- function(x, BurnIn=0)
{
### Initial Checks
if(!identical(class(x), "demonoid"))
stop("x is not an object of class demonoid.")
S <- nrow(x$Posterior1)
if(S < 22) stop("x has too few posterior samples.")
BurnIn <- abs(round(BurnIn))
if(BurnIn >= S) BurnIn <- S - 2
LIV <- x$Parameters
### Remove Burn-in
x$Posterior1 <- x$Posterior2 <- x$Posterior1[(BurnIn+1):S,]
x$Deviance <- x$Deviance[(BurnIn+1):S]
x$Monitor <- x$Monitor[(BurnIn+1):S,,drop=FALSE]
x$Rec.BurnIn.Thinned <- 0
x$Rec.BurnIn.UnThinned <- 0
x$Thinned.Samples <- x$Thinned.Samples - BurnIn
### Summary1
x$Summary1[1:LIV,1] <- colMeans(x$Posterior1)
x$Summary1[1:LIV,2] <- sqrt(.colVars(x$Posterior1))
x$Summary1[1:LIV,4] <- ESS(x$Posterior1)
x$Summary1[1:LIV,5] <- apply(x$Posterior1, 2, quantile, c(0.025),
na.rm=TRUE)
x$Summary1[1:LIV,6] <- apply(x$Posterior1, 2, quantile, c(0.500),
na.rm=TRUE)
x$Summary1[1:LIV,7] <- apply(x$Posterior1, 2, quantile, c(0.975),
na.rm=TRUE)
for (i in 1:LIV) {
temp <- try(MCSE(x$Posterior1[,i]), silent=TRUE)
if(!inherits(temp, "try-error")) x$Summary1[i,3] <- temp
else x$Summary1[i,3] <- MCSE(x$Posterior1[,i],
method="sample.variance")}
### Deviance
x$Summary1[LIV+1,1] <- mean(x$Deviance)
x$Summary1[LIV+1,2] <- sd(x$Deviance)
temp <- try(MCSE(x$Deviance), silent=TRUE)
if(inherits(temp, "try-error"))
temp <- MCSE(x$Deviance, method="sample.variance")
x$Summary1[LIV+1,3] <- temp
x$Summary1[LIV+1,4] <- ESS(x$Deviance)
x$Summary1[LIV+1,5] <- as.numeric(quantile(x$Deviance, probs=0.025,
na.rm=TRUE))
x$Summary1[LIV+1,6] <- as.numeric(quantile(x$Deviance, probs=0.500,
na.rm=TRUE))
x$Summary1[LIV+1,7] <- as.numeric(quantile(x$Deviance, probs=0.975,
na.rm=TRUE))
### Monitor
Num.Mon <- ncol(x$Monitor)
x$Summary1[LIV+1+1:Num.Mon,1] <- colMeans(x$Monitor)
x$Summary1[LIV+1+1:Num.Mon,2] <- sqrt(.colVars(x$Monitor))
x$Summary1[LIV+1+1:Num.Mon,4] <- ESS(x$Monitor)
x$Summary1[LIV+1+1:Num.Mon,5] <- apply(x$Monitor, 2, quantile,
c(0.025), na.rm=TRUE)
x$Summary1[LIV+1+1:Num.Mon,6] <- apply(x$Monitor, 2, quantile,
c(0.500), na.rm=TRUE)
x$Summary1[LIV+1+1:Num.Mon,7] <- apply(x$Monitor, 2, quantile,
c(0.975), na.rm=TRUE)
for (i in 1:Num.Mon) {
temp <- try(MCSE(x$Monitor[,i]), silent=TRUE)
if(!inherits(temp, "try-error")) x$Summary1[LIV+1+i,3] <- temp
else x$Summary1[LIV+1+i,3] <- MCSE(x$Monitor[,i],
method="sample.variance")}
### Summary2
x$Summary2 <- x$Summary1
### DIC
x$DIC1 <- x$DIC2 <- c(mean(x$Deviance), var(x$Deviance)/2,
mean(x$Deviance) + var(x$Deviance)/2)
### Output
return(x)
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.