Description Usage Arguments Value Author(s) Examples
Computes the log posterior density of (beta0, beta1) when yi are independent binomial(ni, pi) and logit(pi)=beta0+beta1*xi and a uniform prior is placed on (beta0, beta1)
1 |
beta |
vector of parameter values beta0 and beta1 |
data |
matrix of columns of covariate values x, sample sizes n, and number of successes y |
value of the log posterior
Jim Albert
1 2 3 4 5 6 |
[1] -6.580629
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.