Nothing
#' Brightest or darkest continuous period
#'
#' This function finds the brightest or darkest continuous period of a given
#' timespan and calculates its `mean` light level, as well as the timing of the period's
#' `onset`, `midpoint`, and `offset`. It is defined as the period with the maximum
#' or minimum mean light level. Note that the data need to be regularly spaced
#' (i.e., no gaps) for correct results.
#'
#' @param Light.vector Numeric vector containing the light data.
#' @param Time.vector Vector containing the time data. Can be \link[base]{POSIXct},
#' \link[hms]{hms}, \link[lubridate]{duration}, or \link[base]{difftime}.
#' @param period String indicating the type of period to look for. Can be either
#' `"brightest"`(the default) or `"darkest"`.
#' @param timespan The timespan across which to calculate. Can be either a
#' \link[lubridate]{duration} or a \link[lubridate]{duration} string, e.g.,
#' `"1 day"` or `"10 sec"`.
#' @param epoch The epoch at which the data was sampled. Can be either a
#' \link[lubridate]{duration} or a string. If it is a string, it needs to be
#' either `"dominant.epoch"` (the default) for a guess based on the data, or a valid
#' \link[lubridate]{duration} string, e.g., `"1 day"` or `"10 sec"`.
#' @param loop Logical. Should the data be looped? If `TRUE`, a full copy of the data
#' will be concatenated at the end of the data. Makes only sense for 24 h data.
#' Defaults to `FALSE`.
#' @param na.rm Logical. Should missing values be removed for the calculation?
#' Defaults to `FALSE`.
#' @param as.df Logical. Should the output be returned as a data frame? Defaults
#' to `TRUE`.
#'
#' @return A named list with the `mean`, `onset`, `midpoint`, and `offset` of the
#' calculated brightest or darkest period, or if `as.df == TRUE` a data frame
#' with columns named `{period}_{timespan}_{metric}`. The output type corresponds
#' to the type of `Time.vector`, e.g., if `Time.vector` is HMS, the timing metrics
#' will be also HMS, and vice versa for POSIXct.
#'
#' @details Assumes regular 24h light data. Otherwise, results may not be
#' meaningful. Looping the data is recommended for finding the darkest period.
#'
#' @references
#' Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies:
#' Quantification metrics. \emph{Lighting Research & Technology}.
#' \doi{10.1177/14771535231170500}
#'
#' @export
#'
#' @family metrics
#'
#' @examples
#' # Dataset with light > 250lx between 06:00 and 18:00
#' dataset1 <-
#' tibble::tibble(
#' Id = rep("A", 24),
#' Datetime = lubridate::as_datetime(0) + lubridate::hours(0:23),
#' MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
#' )
#'
#' dataset1 %>%
#' dplyr::reframe(bright_dark_period(MEDI, Datetime, "brightest", "10 hours",
#' as.df = TRUE))
#' dataset1 %>%
#' dplyr::reframe(bright_dark_period(MEDI, Datetime, "darkest", "7 hours",
#' loop = TRUE, as.df = TRUE))
#'
#' # Dataset with duration as Time.vector
#' dataset2 <-
#' tibble::tibble(
#' Id = rep("A", 24),
#' Datetime = lubridate::dhours(0:23),
#' MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
#' )
#'
#' dataset2 %>%
#' dplyr::reframe(bright_dark_period(MEDI, Datetime, "brightest", "10 hours",
#' as.df = TRUE))
#' dataset2 %>%
#' dplyr::reframe(bright_dark_period(MEDI, Datetime, "darkest", "5 hours",
#' loop = TRUE, as.df = TRUE))
#'
bright_dark_period <- function(Light.vector,
Time.vector,
period = c("brightest", "darkest"),
timespan = "10 hours",
epoch = "dominant.epoch",
loop = FALSE,
na.rm = FALSE,
as.df = FALSE) {
# Match arguments
period <- match.arg(period)
# Perform argument checks
stopifnot(
"`Light.vector` must be numeric!" = is.numeric(Light.vector),
"`Time.vector` must be POSIXct, hms, duration, or difftime!" =
lubridate::is.POSIXct(Time.vector) | hms::is_hms(Time.vector) |
lubridate::is.duration(Time.vector) | lubridate::is.difftime(Time.vector),
"`Light.vector` and `Time.vector` must be same length!" =
length(Light.vector) == length(Time.vector),
"`epoch` must either be a duration or a string" =
lubridate::is.duration(epoch) | is.character(epoch),
"`timespan` must either be a duration or a string" =
lubridate::is.duration(timespan) | is.character(timespan),
"`na.rm` must be logical!" = is.logical(na.rm),
"`as.df` must be logical!" = is.logical(as.df)
)
# Check whether time series is regularly spaced
if (length(unique(diff(Time.vector))) > 1) {
warning("`Time.vector` is not regularly spaced. Calculated results may be incorrect!")
}
# Get the epochs based on the data
if (is.character(epoch) && epoch == "dominant.epoch") {
epoch <- count_difftime(tibble::tibble(Datetime = Time.vector))$difftime[1]
}
# If the user specified an epoch, use that instead
epoch <- lubridate::as.duration(epoch)
# Convert timespan to seconds
timespan <- lubridate::as.duration(timespan)
# Check if timespan longer than Time.vector
time.total <- dplyr::last(Time.vector) - dplyr::first(Time.vector)
stopifnot("Timespan must be shorter than length of `Time.vector` interval!" =
timespan < time.total)
# Loop data
if (loop) {
Light.vector <- c(Light.vector, Light.vector)
Time.vector <- c(Time.vector, Time.vector)
}
# Calculate window size
window <- floor(as.numeric(timespan) / as.numeric(epoch))
if (window %% 2 != 0) {
window <- window + 1
}
# Calculate rolling means
means <- slider::slide_vec(Light.vector, .f = mean, na.rm = na.rm,
.before = window/2-1, .after = window/2,
.complete = TRUE)
# Find maximum/minimum mean value
center <- switch(period,
"brightest" = which(means == max(means, na.rm = TRUE))[1],
"darkest" = which(means == min(means, na.rm = TRUE))[1]
)
# Prepare output
out <- list(
"mean" = means[center],
"midpoint" = Time.vector[center],
"onset" = Time.vector[center - (window / 2 - 1)],
"offset" = Time.vector[center + (window / 2)]
)
# Return as data frame or numeric matrix
if (as.df) {
ts <- paste0(as.numeric(timespan, unit = "hours"), "h")
out <- tibble::as_tibble(out) %>%
dplyr::rename_with(~paste(period, ts, .x, sep = "_"))
}
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.