Nothing
## load data
obj <- set_RLum(class = "RLum.Results",
data = list(vn_values = rep(x = c(1,2), each = 50)))
test_that("input validation", {
testthat::skip_on_cran()
expect_error(calc_MoransI("error"),
"'object' should be of class 'RLum.Results', 'numeric' or 'integer'")
expect_error(calc_MoransI(1:50),
"'object' should have length 100")
expect_error(calc_MoransI(obj, df_neighbours = "error"),
"'df_neighbours' should be of class 'data.frame'")
expect_error(calc_MoransI(obj, df_neighbours = iris),
"'df_neighbours' should be a data frame with 3 columns")
expect_error(calc_MoransI(obj, spatial_autocorrelation = "error"),
"'spatial_autocorrelation' should be a single logical value")
expect_error(calc_MoransI(obj, compute_pseudo_p = "error"),
"'compute_pseudo_p' should be a single logical value")
expect_error(calc_MoransI(obj, n_permutations = "error"),
"'n_permutations' should be a positive integer scalar")
expect_error(calc_MoransI(obj, ignore_borders = "error"),
"'ignore_borders' should be a single logical value")
expect_error(calc_MoransI(obj, return_intermediate_values = "error"),
"'return_intermediate_values' should be a single logical value")
expect_error(calc_MoransI(c(1, rep(NA, 99)),
spatial_autocorrelation = FALSE),
"There should be at least 2 non-missing values")
expect_warning(calc_MoransI(c(1, rep(NA, 99)),
spatial_autocorrelation = TRUE),
"No bordering grain locations given in 'df_neighbours'") # FIXME(mcol)
expect_warning(res <- calc_MoransI(obj, df_neighbours = iris[0, 1:3]),
"No bordering grain locations given in 'df_neighbours'")
expect_equal(res, NaN)
})
test_that("check functionality", {
testthat::skip_on_cran()
set.seed(1)
expect_snapshot_plain(calc_MoransI(obj))
expect_snapshot_plain(calc_MoransI(1:100, ignore_borders = TRUE))
expect_snapshot_plain(calc_MoransI(obj, return_intermediate_values = TRUE))
expect_snapshot_plain(calc_MoransI(obj,
compute_pseudo_p = TRUE,
tested_moransI = 0.125,
return_intermediate_values = TRUE))
expect_equal(calc_MoransI(obj, spatial_autocorrelation = FALSE),
-0.010101010)
expect_equal(calc_MoransI(1:100, spatial_autocorrelation = FALSE),
-0.010101010)
expect_equal(calc_MoransI(c(1:20, rep(NA, 80)), spatial_autocorrelation = FALSE),
-0.052631579)
expect_warning(res <- calc_MoransI(obj, compute_pseudo_p = TRUE),
"Pseudo-p might be overestimated: the real p-value is closer")
expect_equal(res, 0.0010)
expect_equal(calc_MoransI(1:100, compute_pseudo_p = TRUE,
tested_moransI = 0.05),
0.188)
})
test_that("check .get_Neighbours", {
testthat::skip_on_cran()
expect_error(.get_Neighbours(NULL),
"'object' should be of class 'RLum.Results', 'numeric' or")
expect_snapshot_plain(.get_Neighbours(obj))
expect_snapshot_plain(.get_Neighbours(obj, ignore_borders = TRUE))
expect_snapshot_plain(.get_Neighbours(c(1:99, NA)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.