ss.aipe.sc | R Documentation |
A function to calculate the appropriate sample size per group for the standardized contrast in ANOVA such that the width of the confidence interval is sufficiently narrow.
ss.aipe.sc(psi, c.weights, width, conf.level = 0.95,
assurance = NULL, certainty = NULL, ...)
psi |
population standardized contrast |
c.weights |
the contrast weights |
width |
the desired full width of the obtained confidence interval |
conf.level |
the desired confidence interval coverage, (i.e., 1 - Type I error rate) |
assurance |
parameter to ensure that the obtained confidence interval width is narrower than the desired width with a specified degree of certainty (must be NULL or between zero and unity) |
certainty |
an alias for |
... |
allows one to potentially include parameter values for inner functions |
n |
necessary sample size per group |
Ken Kelley (University of Notre Dame; KKelley@ND.Edu); Keke Lai
Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions, Educational and Psychological Measurement, 61, 532–574.
Hedges, L. V. (1981). Distribution theory for Glass's Estimator of effect size and related estimators. Journal of Educational Statistics, 2, 107–128.
Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the standardized mean difference: Bootstrap and parametric confidence intervals, Educational and Psychological Measurement, 65, 51–69.
Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, application, and implementation. Journal of Statistical Software, 20 (8), 1–24.
Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference: Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11(4), 363–385.
Lai, K., & Kelley, K. (2007). Sample size planning for standardized ANCOVA and ANOVA contrasts: Obtaining narrow confidence intervals. Manuscript submitted for publication.
Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there were no significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.
ci.sc
, conf.limits.nct
, ss.aipe.c
# Suppose the population standardized contrast is believed to be .6
# in some 5-group ANOVA model. The researcher is interested in comparing
# the average of means of group 1 and 2 with the average of group 3 and 4.
# To calculate the necessary sample size per gorup such that the width
# of 95 percent confidence interval of the standardized
# contrast is, with 90 percent assurance, no wider than .4:
# ss.aipe.sc(psi=.6, c.weights=c(.5, .5, -.5, -.5, 0), width=.4, assurance=.90)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.