vit | R Documentation |
A function to help visualize individual trajectories in a longitudinal (i.e., analysis of change) context.
vit(id = "", occasion = "", score = "", Data = NULL, group = NULL,
subset.ids = NULL, pct.rand = NULL, number.rand = NULL,
All.in.One = TRUE, ylab = NULL, xlab = NULL, same.scales = TRUE,
plot.points = TRUE, save.pdf = FALSE, save.eps = FALSE,
save.jpg = FALSE, file = "", layout = c(3, 3), col = NULL,
pch = 16, cex = 0.7, ...)
id |
string variable of the column name of id |
occasion |
string variable of the column name of time variable |
score |
string variable of the column name where the score (i.e., dependent variable) is located |
Data |
data set with named column variables (see above) |
group |
if plotting parameters should be conditional on group membership |
subset.ids |
id values for a selected subset of individuals |
pct.rand |
percentage of random trajectories to be plotted |
number.rand |
number of random trajectories to be plotted |
All.in.One |
should trajectories be in a single or multiple plots |
ylab |
label for the ordinate (i.e., y-axis; see par) |
xlab |
label for the abscissa (i.e., x-axis; see par) |
same.scales |
should the y-axes have the same scales |
plot.points |
should the points be plotted |
save.pdf |
save a pdf file |
save.eps |
save a postscript file |
save.jpg |
save a jpg file |
file |
file name and file path for the graph(s) to save, if |
layout |
define the per-page layout when |
col |
color(s) of the line(s) and points |
pch |
plotting character(s); see par |
cex |
size of the points (1 is the R default; see par) |
... |
optional plotting specifications |
This function makes visualizing individual trajectories simple. Data should be in the "univariate format" (i.e., the same format as lmer and nlme data.)
Returns a plot of individual trajectories with the specifications provided.
Ken Kelley (University of Notre Dame; KKelley@ND.Edu) and Po-Ju Wu (Indiana University)
par, nlme, vit.fitted,
## Not run:
data(Gardner.LD)
# Although many options are possible, a simple call to
# 'vit' is of the form:
# vit(id="ID", occasion= "Trial", score= "Score", Data=Gardner.LD)
# Now color is conditional on group membership.
# vit(id="ID", occasion= "Trial", score="Score", Data=Gardner.LD,
# group="Group")
# Now randomly selects 50
# vit(id="ID", occasion= "Trial", score="Score", Data=Gardner.LD,
# pct.rand=50, group="Group")
# Specified individuals are plotted (by group)
# vit(id="ID", occasion= "Trial", score="Score", Data=Gardner.LD,
# subset.ids=c(1, 4, 8, 13, 17, 21), group="Group")
# Now colors for groups are changed .
# vit(id="ID", occasion= "Trial", score="Score", Data=Gardner.LD,
# group="Group",subset.ids=c(1, 4, 8, 13, 17, 21), col=c("Green", "Blue"))
# Now each individual specified is plotted separately.
# vit(id="ID", occasion= "Trial", score="Score", Data=Gardner.LD,
# group="Group",subset.ids=c(1, 4, 8, 13, 17, 21), col=c("Green", "Blue"),
# All.in.One=FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.