MCMCpaircompare | R Documentation |
This function generates a sample from the posterior distribution of a
model for pairwise comparisons data with a probit link. Thurstone's model
is a special case of this model when the \alpha
parameter is fixed at
1.
MCMCpaircompare(
pwc.data,
theta.constraints = list(),
alpha.fixed = FALSE,
burnin = 1000,
mcmc = 20000,
thin = 1,
verbose = 0,
seed = NA,
alpha.start = NA,
a = 0,
A = 0.25,
store.theta = TRUE,
store.alpha = FALSE,
...
)
pwc.data |
A data.frame containing the pairwise comparisons data.
Each row of |
theta.constraints |
A list specifying possible simple equality or
inequality constraints on the item parameters. A typical entry in the
list has one of three forms: |
alpha.fixed |
Should alpha be fixed to a constant value of 1 for all raters? Default is FALSE. If set to FALSE, an alpha value is estimated for each rater. |
burnin |
The number of burn-in iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. |
thin |
The thinning interval used in the simulation. The number of Gibbs iterations must be divisible by this value. |
verbose |
A switch which determines whether or not the progress of the
sampler is printed to the screen. If |
seed |
The seed for the random number generator. If NA, the Mersenne
Twister generator is used with default seed 12345; if an integer is passed
it is used to seed the Mersenne twister. The user can also pass a list of
length two to use the L'Ecuyer random number generator, which is suitable
for parallel computation. The first element of the list is the L'Ecuyer
seed, which is a vector of length six or NA (if NA a default seed of
|
alpha.start |
The starting value for the alpha vector. This can either be a scalar or a column vector with dimension equal to the number of alphas. If this takes a scalar value, then that value will serve as the starting value for all of the alphas. The default value of NA will set the starting value of each alpha parameter to 1. |
a |
The prior mean of alpha. Must be a scalar. Default is 0. |
A |
The prior precision of alpha. Must be a positive scalar. Default is 0.25 (prior variance is 4). |
store.theta |
Should the theta draws be returned? Default is TRUE. |
store.alpha |
Should the alpha draws be returned? Default is FALSE. |
... |
further arguments to be passed |
MCMCpaircompare
uses the data augmentation approach of Albert and
Chib (1993). The user supplies data and priors, and a sample from the
posterior is returned as an mcmc
object, which can be subsequently
analyzed in the coda
package.
The simulation is done in compiled C++ code to maximize efficiency.
Please consult the coda
package documentation for a comprehensive
list of functions that can be used to analyze the posterior sample.
The model takes the following form:
i = 1,...,I \ \ \ \ (raters)
j = 1,...,J \ \ \ \ (items)
Y_{ijj'} = 1 \ \ if \ \ i \ \ chooses \ \ j \ \ over \ \ j'
Y_{ijj'} = 0 \ \ if \ \ i \ \ chooses \ \ j' \ \ over \ \ j
Y_{ijj'} = NA \ \ if \ \ i \ \ chooses \ \ neither
Pr(Y_{ijj'} = 1) = \Phi( \alpha_{i} [\theta_{j} - \theta_{ j'} ] )
The following Gaussian priors are assumed:
\alpha_i \sim \mathcal{N}(a, A^{-1})
\theta_j \sim \mathcal{N}(0, 1)
For identification, some \theta_j
s are truncated above or below 0,
or fixed to constants.
An mcmc object that contains the posterior sample. This object can be summarized by functions provided by the coda package.
Albert, J. H. and S. Chib. 1993. “Bayesian Analysis of Binary and Polychotomous Response Data.” J. Amer. Statist. Assoc. 88, 669-679
Yu, Qiushi and Kevin M. Quinn. 2021. “A Multidimensional Pairwise Comparison Model for Heterogeneous Perception with an Application to Modeling the Perceived Truthfulness of Public Statements on COVID-19.” University of Michigan Working Paper.
Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v042.i09")}.
Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0. http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.
Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diagnostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf.
plot.mcmc
,summary.mcmc
,
MCMCpaircompare2d
,
MCMCpaircompare2dDP
## Not run:
## Euro 2016 example
data(Euro2016)
posterior1 <- MCMCpaircompare(pwc.data=Euro2016,
theta.constraints=list(Ukraine="-",
Portugal="+"),
alpha.fixed=TRUE,
verbose=10000,
burnin=10000, mcmc=500000, thin=100,
store.theta=TRUE, store.alpha=FALSE)
## alternative identification constraints
posterior2 <- MCMCpaircompare(pwc.data=Euro2016,
theta.constraints=list(Ukraine="-",
Portugal=1),
alpha.fixed=TRUE,
verbose=10000,
burnin=10000, mcmc=500000, thin=100,
store.theta=TRUE, store.alpha=FALSE)
## a synthetic data example with estimated rater-specific parameters
set.seed(123)
I <- 65 ## number of raters
J <- 50 ## number of items to be compared
## raters 1 to 5 have less sensitivity to stimuli than raters 6 through I
alpha.true <- c(rnorm(5, m=0.2, s=0.05), rnorm(I - 5, m=1, s=0.1))
theta.true <- sort(rnorm(J, m=0, s=1))
n.comparisons <- 125 ## number of pairwise comparisons for each rater
## generate synthetic data according to the assumed model
rater.id <- NULL
item.1.id <- NULL
item.2.id <- NULL
choice.id <- NULL
for (i in 1:I){
for (c in 1:n.comparisons){
rater.id <- c(rater.id, i+100)
item.numbers <- sample(1:J, size=2, replace=FALSE)
item.1 <- item.numbers[1]
item.2 <- item.numbers[2]
item.1.id <- c(item.1.id, item.1)
item.2.id <- c(item.2.id, item.2)
eta <- alpha.true[i] * (theta.true[item.1] - theta.true[item.2])
prob.item.1.chosen <- pnorm(eta)
u <- runif(1)
if (u <= prob.item.1.chosen){
choice.id <- c(choice.id, item.1)
}
else{
choice.id <- c(choice.id, item.2)
}
}
}
item.1.id <- paste("item", item.1.id+100, sep=".")
item.2.id <- paste("item", item.2.id+100, sep=".")
choice.id <- paste("item", choice.id+100, sep=".")
sim.data <- data.frame(rater.id, item.1.id, item.2.id, choice.id)
## fit the model
posterior <- MCMCpaircompare(pwc.data=sim.data,
theta.constraints=list(item.101=-2,
item.150=2),
alpha.fixed=FALSE,
verbose=10000,
a=0, A=0.5,
burnin=10000, mcmc=200000, thin=100,
store.theta=TRUE, store.alpha=TRUE)
theta.draws <- posterior[, grep("theta", colnames(posterior))]
alpha.draws <- posterior[, grep("alpha", colnames(posterior))]
theta.post.med <- apply(theta.draws, 2, median)
alpha.post.med <- apply(alpha.draws, 2, median)
theta.post.025 <- apply(theta.draws, 2, quantile, prob=0.025)
theta.post.975 <- apply(theta.draws, 2, quantile, prob=0.975)
alpha.post.025 <- apply(alpha.draws, 2, quantile, prob=0.025)
alpha.post.975 <- apply(alpha.draws, 2, quantile, prob=0.975)
## compare estimates to truth
par(mfrow=c(1,2))
plot(theta.true, theta.post.med, xlim=c(-2.5, 2.5), ylim=c(-2.5, 2.5),
col=rgb(0,0,0,0.3))
segments(x0=theta.true, x1=theta.true,
y0=theta.post.025, y1=theta.post.975,
col=rgb(0,0,0,0.3))
abline(0, 1, col=rgb(1,0,0,0.5))
plot(alpha.true, alpha.post.med, xlim=c(0, 1.2), ylim=c(0, 3),
col=rgb(0,0,0,0.3))
segments(x0=alpha.true, x1=alpha.true,
y0=alpha.post.025, y1=alpha.post.975,
col=rgb(0,0,0,0.3))
abline(0, 1, col=rgb(1,0,0,0.5))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.