Nothing
#------------------------------------------------
#' Model Parameter List Creation
#'
#' \code{model_param_list_create} creates list of model parameters to be used
#' within \code{equilibrium_init_create}
#'
#' @param eta Death rate for expoential population distribtuion, i.e. 1/Mean Population Age. Default = 0.0001305
#' @param rho Age-dependent biting parameter. Default = 0.85
#' @param a0 Age-dependent biting parameter. Default = 2920
#' @param sigma2 Variance of the log heterogeneity in biting rates. Default = 1.67
#' @param max_age Maximum age in days. Default = 100*365
#' @param rA Rate of leaving asymptomatic infection. Default = 0.00512821
#' @param rT Rate of leaving treatment. Default = 0.2
#' @param rD Rate of leaving clinical disease. Default = 0.2
#' @param rU Rate of recovering from subpatent infection. Default = 0.00906627
#' @param rP Rate of leaving prophylaxis. Default = 0.06666667
#' @param dE Latent period of human infection. Default = 12
#' @param delayGam Lag from parasites to infectious gametocytes. Default = 12.5
#' @param cD Untreated disease contribution to infectiousness. Default = 0.0676909
#' @param cT Treated disease contribution to infectiousness. Default = 0.322 * cD
#' @param cU Subpatent disease contribution to infectiousness. Default = 0.006203
#' @param gamma1 Parameter for infectiousness of state A. Default = 1.82425
#' @param d1 Minimum probability due to maximum immunity. Default = 0.160527
#' @param dID Inverse of decay rate. Default = 3650
#' @param ID0 Scale parameter. Default = 1.577533
#' @param kD Shape parameter. Default = 0.476614
#' @param uD Duration in which immunity is not boosted. Default = 9.44512
#' @param aD Scale parameter relating age to immunity. Default = 8001.99
#' @param fD0 Time-scale at which immunity changes with age. Default = 0.007055
#' @param gammaD Shape parameter relating age to immunity. Default = 4.8183
#' @param alphaA PCR detection probability parameters state A. Default = 0.757
#' @param alphaU PCR detection probability parameters state U. Default = 0.186
#' @param b0 Maximum probability due to no immunity. Default = 0.590076
#' @param b1 Maximum relative reduction due to immunity. Default = 0.5
#' @param dB Inverse of decay rate. Default = 3650
#' @param IB0 Scale parameter. Default = 43.8787
#' @param kB Shape parameter. Default = 2.15506
#' @param uB Duration in which immunity is not boosted. Default = 7.19919
#' @param theta0 Maximum probability of severe infection due to no immunity. Default = 0.0749886
#' @param theta1 Maximum reduction due to to immunity. Default = 0.0001191
#' @param iv0 Scale parameter. Default = 1.09629
#' @param kv Shape parameter. Default = 2.00048
#' @param av Age-dependent modifier. Default = 2493.41
#' @param gammaV Age-dependent modifier. Default = 2.91282
#' @param fvS Age-dependent modifier. Default = 0.141195
#' @param pctMort Percentage of severe cases that die. Default = 0.215
#' @param phi0 Maximum probability due to no immunity. Default = 0.791666
#' @param phi1 Maximum relative reduction due to immunity. Default = 0.000737
#' @param dCA Inverse of decay rate. Default = 10950
#' @param dVM Inverse of decay rate. Default = 76.8365
#' @param dVA Inverse of decay rate. Default = 30 * 365
#' @param IC0 Scale parameter. Default = 18.02366
#' @param kC Shape parameter. Default = 2.36949
#' @param uCA Duration in which immunity is not boosted. Default = 6.06349
#' @param uVA Duration in which immunity to severe disease is not boosted. Default = 11.4321
#' @param PM New-born immunity relative to mother’s. Default = 0.774368
#' @param PVM New-born immunity to severe disease relative to mothers. Default = 0.195768
#' @param dCM Inverse of decay rate of maternal immunity. Default = 67.6952
#' @param tau1 Duration of host seeking, assumed to be constant between species. Default = 0.69
#' @param tau2 Duration of mosquito resting after feed. Default = 2.31
#' @param muF Daily mortality of adult mosquitos. Default = 0.132
#' @param Q0 Anthrophagy probability. Default = 0.92
#' @param nEIP Number of Erlang-distributed EIP compartments. Default = 6
#' @param qEIP Inverse of the mean duration of the EIP. Default = 1/10 (days)
#' @param DY number of days in a year. Default = 365
#' @param thetaB proportion of bites on a person in bed. Default = 0.89
#' @param thetaI proportion of bites on a person outdoors. Default = 0.97
#' @param r_llin probability of repeating a feeding attempt due to LLINs. Default = 0.56
#' @param s_llin probability of feeding and surviving in presence of LLINs. Default = 0.03
#' @param r_irs probability of repeating a feeding attempt due to IRS. Default = 0.60
#' @param s_irs probability of feeding and surviving in presence of IRS. Default = 0
#' @param qE mosquito egg lifecycle parameter. Default = 1/3
#' @param nE mosquito egg lifecycle parameter. Default = 2
#' @param qL mosquito larval lifecycle parameter. Default = 1/7
#' @param nL mosquito larval lifecycle parameter. Default = 3
#' @param qP mosquito pupae lifecycle parameter. Default = 1/1
#' @param nP mosquito pupae lifecycle parameter. Default = 2
#' @param muE death rate of egg stage. Default = 0.05
#' @param muL death rate of larval stage. Default = 0.15
#' @param muP death rate of pupae stage. Default = 0.05
#' @param muM death rate of male adult stage. Default = 0.132
#' @param eps eggs laid per day. Default = 58.9
#' @param nu mosquito lifecycle parameter. Default = 1/(4/24
#' @param NH number of humans. Default = 1000
#' @param ... Any other parameters needed for non-standard model. If they share the same name
#' as any of the defined parameters \code{model_param_list_create} will stop. You can either write
#' any extra parameters you like individually, e.g. model_param_list_create(extra1 = 1, extra2 = 2)
#' and these parameteres will appear appended to the returned list, or you can pass explicitly
#' the ellipsis argument as a list created before, e.g. model_param_list_create(...=list(extra1 = 1, extra2 = 2))
#'
#' @examples
#' imperial_model_param_list_create(NH=1500)
#' imperial_model_param_list_create(qE=1/4)
#'
#' @return A named vector of all baseline parameters required by the Imperial malaria model.
#'
#' This function creates all of the necessary parameters for the Imperial model. Parameters furnished by MGDrivE will be
#' removed from this function. Adapted from: https://github.com/mrc-ide/deterministic-malaria-model/blob/master/R/model_parameters.R
#'
#' A newer version of the model also includes parameters for severe disease. See: https://github.com/mrc-ide/malariasimulation for details.
#'
#' @export
imperial_model_param_list_create <- function(
# age, heterogeneity in exposure,
eta = 1/(21*365),
rho = 0.85,
a0 = 2920,
sigma2 = 1.67,
max_age = 100*365,
# rate of leaving infection states
rA = 1/195,
rT = 0.2,
rD = 0.2,
rU = 1/110.299,
rP = 1/15,
# human latent period and time lag from asexual parasites to
dE = 12,
delayGam = 12.5,
# human infectiousness to mosquitoes
cD = 0.0676909,
cT = 0.322 * cD,
cU = 0.006203,
gamma1 = 1.82425,
# Immunity reducing probability of detection
d1 = 0.160527,
dID = 3650,
ID0 = 1.577533,
kD = 0.476614,
uD = 9.44512,
aD = 8001.99,
fD0 = 0.007055,
gammaD = 4.8183,
alphaA = 0.75735,
alphaU = 0.185624,
# Immunity reducing probability of infection
b0 = 0.590076,
b1 = 0.5,
dB = 3650,
IB0 = 43.8787,
kB = 2.15506,
uB = 7.19919,
# Probabiity of severe infection
theta0 = 0.0749886, # maximum probability due to no immunity
theta1 = 0.0001191, # maximum reduction due to to immunity
iv0 = 1.09629, # scale parameter
kv = 2.00048, # shape parameter
av = 2493.41, # age-dependent modifier
gammaV = 2.91282, # age-dependent modifier
fvS = 0.141195, # age-dependent modifier
pctMort = 0.215, # percentage of severe cases that die
# Immunity reducing probability of clinical disease
phi0 = 0.791666,
phi1 = 0.000737,
dCA = 10950,
IC0 = 18.02366,
kC = 2.36949,
uCA = 6.06349,
PM = 0.774368,
dCM = 67.6952,
# Immunity reducing probability of severe disease
dVM = 76.8365,
dVA = 30*365,
PVM = 0.195768,
uVA = 11.4321,
# entomological parameters
tau1 = 0.69,
tau2 = 2.31,
muF = 0.132, # female mortality
nEIP = 3, # number of EIP compartments
qEIP = 1/10, # inverse of mean duration of EIP
Q0 = 0.92,
DY = 365,
thetaB = 0.89, # proportion of bites on a person in bed
thetaI = 0.97, # proportion of bites on a person outdoors
r_llin = 0.56, # probability of repeating a feeding attempt due to LLINs
s_llin = 0.03, # probability of feeding and surviving in presence of LLINs
r_irs = 0.60, # probability of repeating a feeding attempt due to IRS
s_irs = 0, # probability of feeding and surviving in presence of IRS
# lifecycle parameters
qE = 1/3,
nE = 2,
qL = 1/7,
nL = 3,
qP = 1/1,
nP = 2,
muE = 0.05,
muL = 0.15,
muP = 0.05,
muM = 0.132,
eps = 58.9,
nu = 1/(4/24),
# epidemiological parameters
NH = 1000,
...
){
# set up param list
mp_list <- list()
# catach extra params and place in list
extra_param_list <- list(...)
if(length(extra_param_list)>0){
if(is.list(extra_param_list[[1]])){
extra_param_list <- extra_param_list[[1]]
}
}
## DEFAULT PARAMS
# duration of year
mp_list$DY <- DY
# age, heterogeneity in exposure
mp_list$eta <- eta
mp_list$rho <- rho
mp_list$a0 <- a0
mp_list$sigma2 <- sigma2
mp_list$max_age <- max_age
# rate of leaving infection states
mp_list$rA <- rA
mp_list$rT <- rT
mp_list$rD <- rD
mp_list$rU <- rU
mp_list$rP <- rP
# human latent period and time lag from asexual parasites to
# infectiousness
mp_list$dE <- dE
mp_list$delayGam <- delayGam
# infectiousness to mosquitoes
mp_list$cD <- cD
mp_list$cT <- cT
mp_list$cU <- cU
mp_list$gamma1 <- gamma1
# Immunity reducing probability of detection
mp_list$d1 <- d1
mp_list$dID <- dID
mp_list$ID0 <- ID0
mp_list$kD <- kD
mp_list$uD <- uD
mp_list$aD <- aD
mp_list$fD0 <- fD0
mp_list$gammaD <- gammaD
# PCR prevalence parameters
mp_list$alphaA <- alphaA
mp_list$alphaU <- alphaU
# anti-infection immunity
mp_list$b0 <- b0
mp_list$b1 <- b1
mp_list$dB <- dB
mp_list$IB0 <- IB0
mp_list$kB <- kB
mp_list$uB <- uB
# clinical immunity
mp_list$phi0 <- phi0
mp_list$phi1 <- phi1
mp_list$dCA <- dCA
mp_list$IC0 <- IC0
mp_list$kC <- kC
mp_list$uCA <- uCA
mp_list$PM <- PM
mp_list$dCM <- dCM
# severe infection parameters
mp_list$theta0 <- theta0
mp_list$theta1 <- theta1
mp_list$iv0 <- iv0
mp_list$kv <- kv
mp_list$av <- av
mp_list$gammaV <- gammaV
mp_list$fvS <- fvS
mp_list$pctMort <- pctMort
mp_list$dVM <- dVM
mp_list$dVA <- dVA
mp_list$PVM <- PVM
mp_list$uVA <- uVA
# entomological parameters
# lifecycle parameters
mp_list$qE <- qE
mp_list$nE <- nE
mp_list$qL <- qL
mp_list$nL <- nL
mp_list$qP <- qP
mp_list$nP <- nP
mp_list$muE <- muE
mp_list$muL <- muL
mp_list$muP <- muP
mp_list$muF <- muF
mp_list$muM <- muM
mp_list$eps <- eps
mp_list$nu <- nu
# epidemiological parameters
mp_list$NH <- NH
mp_list$nEIP <- nEIP
mp_list$qEIP <- qEIP
mp_list$tau1 <- tau1
mp_list$tau2 <- tau2
mp_list$muF <- muF
mp_list$Q0 <- Q0
mp_list$fv0 <- 1 / (tau1 + tau2)
mp_list$av0 <- Q0 * mp_list$fv0 # daily feeeding rate on humans
# in Erlang distributed EIP, survival probability is proportional to number of
# compartments, death rate, and mean duration in each compartment
mp_list$Surv0 <- (mp_list$nEIP * mp_list$qEIP/ (mp_list$nEIP * mp_list$qEIP + mp_list$muF))^mp_list$nEIP
mp_list$beta <- (eps*muF)/(exp(muF/mp_list$fv0)-1)
# intervention related parameters
mp_list$thetaB <- thetaB
mp_list$thetaI <- thetaI
mp_list$r_llin <- r_llin
mp_list$s_llin <- s_llin
mp_list$r_irs <- r_irs
mp_list$s_irs <- s_irs
return(append(mp_list,extra_param_list))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.