# BinormCircle: Random numbers containing a "circle" In MSG: Data and Functions for the Book Modern Statistical Graphics

## Description

The data was generated from two independent random varialbes (standard Normal distribution) and further points on a circle were added to the data. The order of the data was randomized.

## Format

A data frame with 20000 observations on the following 2 variables.

V1

the first random variable with the x-axis coordinate of the circle

V2

the second random variable with the y-axis coordinate of the circle

## Details

See the example section for the code to generate the data.

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39``` ```data(BinormCircle) ## original plot: cannot see anything plot(BinormCircle) ## transparent colors (alpha = 0.1) plot(BinormCircle, col = rgb(0, 0, 0, 0.1)) ## set axes lmits plot(BinormCircle, xlim = c(-1, 1), ylim = c(-1, 1)) ## small symbols plot(BinormCircle, pch = ".") ## subset plot(BinormCircle[sample(nrow(BinormCircle), 1000), ]) ## 2D density estimation library(KernSmooth) fit = bkde2D(as.matrix(BinormCircle), dpik(as.matrix(BinormCircle))) # perspective plot by persp() persp(fit\$x1, fit\$x2, fit\$fhat) if (interactive() && require("rgl")) { # perspective plot by OpenGL rgl.surface(fit\$x1, fit\$x2, fit\$fhat) # animation M = par3d("userMatrix") play3d(par3dinterp(userMatrix = list(M, rotate3d(M, pi/2, 1, 0, 0), rotate3d(M, pi/2, 0, 1, 0), rotate3d(M, pi, 0, 0, 1))), duration = 20) } ## data generation x1 = rnorm(10000) y1 = rnorm(10000) x2 = rep(0.5 * cos(seq(0, 2 * pi, length = 500)), 20) y2 = rep(0.5 * sin(seq(0, 2 * pi, length = 500)), 20) x = cbind(c(x1, x2), c(y1, y2)) BinormCircle = as.data.frame(round(x[sample(20000), ], 3)) ```

MSG documentation built on May 29, 2017, 4:30 p.m.