Nothing
mppca.scores.plot <-
function(output, group=FALSE, gplegend=TRUE)
{
q<-output$q
g<-output$g
scores<-output$scores
sig<-output$sig
loadings<-output$loadings
gpnames<-levels(as.factor(group))
if(q==1)
{
if((group==FALSE)[1])
{
for(k in 1:g)
{
plot(scores[[k]][,1], rep(0,nrow(scores[[k]])), yaxt='n', cex=1.3, pch=16, col=1, font=5, xlab="PC 1", ylab="", main=paste("Group ", k, sep=""))
sigma<-(sig)*solve((t(loadings[,,k])%*%loadings[,,k]) + (sig*diag(q)))
legend("topright", bty="n", paste("Variance = ", round(sigma,2), sep=""))
abline(h=0)
if((g > 1) & (k < g))
{
ask(msg = "Press <RETURN> to view the scores plot for the next group: ")
}
} #k
}#if
else{
for(k in 1:g)
{
plot(scores[[k]][,1], rep(0,nrow(scores[[k]])), yaxt='n', cex=1.3, pch=rep(15:26)[group[output$clustering==k]], col=group[output$clustering==k], font=5, xlab="PC 1", ylab="", main=paste("Group ", k, sep=""))
sigma<-(sig)*solve((t(loadings[,,k])%*%loadings[,,k]) + (sig*diag(q)))
legend("topright", bty="n", paste("Variance = ", round(sigma,2), sep=""))
abline(h=0)
if(gplegend == TRUE)
{
legend("topleft", bty = "n", paste("Treatment group ", c(gpnames), sep=""), col = 1:g, pch = rep(15:26)[as.numeric(names(table(group)))])
}
if((g > 1) & (k < g))
{
ask(msg = "Press <RETURN> to view the scores plot for the next group: ")
}
} #k
}#else
}#if
if(q==2)
{
if((group==FALSE)[1])
{
for(k in 1:g)
{
plot(scores[[k]][,1], scores[[k]][,2], xlim=c(min(scores[[k]][,1])-1,max(scores[[k]][,1])+1), ylim=c(min(scores[[k]][,2])-1,
max(scores[[k]][,2])+1), type="n", xlab="PC1", ylab="PC 2", main=paste("Group ", k, sep=""))
sigma<-(sig)*solve((t(loadings[,,k])%*%loadings[,,k]) + (sig*diag(q)))
for(i in 1:nrow(scores[[k]]))
{
points(ellipse(sigma[1:2,1:2], centre=scores[[k]][,1:2][i,], level=0.95), type="l", col="grey50")
}#i
points(scores[[k]][,1], scores[[k]][,2], cex=1.3, pch=16, font=5, col=1)
legend("topleft", bty = "n", c("95% Posterior Set"), col = "grey50", lty = c(1))
if((g > 1) & (k < g))
{
ask(msg = "Press <RETURN> to view the scores plot for the next group: ")
}
} #k
}else{
for(k in 1:g)
{
plot(scores[[k]][,1], scores[[k]][,2], xlim=c(min(scores[[k]][,1])-1,max(scores[[k]][,1])+1), ylim=c(min(scores[[k]][,2])-1,
max(scores[[k]][,2])+1), type="n", xlab="PC1", ylab="PC 2", main=paste("Group ", k, sep=""))
sigma<-(sig)*solve((t(loadings[,,k])%*%loadings[,,k]) + (sig*diag(q)))
for(i in 1:nrow(scores[[k]]))
{
points(ellipse(sigma[1:2,1:2], centre=scores[[k]][,1:2][i,], level=0.95), type="l", col="grey50")
}#i
points(scores[[k]][,1], scores[[k]][,2], cex=1, pch=rep(15:26)[group[output$clustering==k]], col=group[output$clustering==k], font=5)
legend("topleft", bty = "n", c("95% Posterior Set"), col = "grey50", lty = c(1))
if(gplegend == TRUE)
{
legend("topright", bty = "n", c(paste("Treatment Group ", c(gpnames), sep="")), col = 1:g,
lty = c(rep(0,length(gpnames))), pch = rep(15:26)[as.numeric(names(table(group)))])
}
if((g > 1) & (k < g))
{
ask(msg = "Press <RETURN> to view the scores plot for the next group: ")
}
} #k
} # else
} # if
if(q>2)
{
if((group==FALSE)[1])
{
for(k in 1:g)
{
sigma<-(sig)*solve((t(loadings[,,k])%*%loadings[,,k]) + (sig*diag(q)))
c1<-1
c2<-1
for(j in 1:choose(q,(q-2)))
{
c2<-c2+1
tempscores<-cbind(scores[[k]][,c1], scores[[k]][, c2])
varcov<-matrix(c(sigma[c1,c1], sigma[c1,c2], sigma[c2,c1], sigma[c2,c2]), 2, 2, byrow=TRUE)
plot(tempscores[,1], tempscores[,2], xlim=c(min(tempscores[,1])-1,max(tempscores[,1])+1), ylim=c(min(tempscores[,2])-1, max(tempscores[,2])+1), type="n", xlab=paste("PC",c1, sep=""), ylab=paste("PC",c2, sep=""), main=paste("Group ", k, sep=""))
for(l in 1:nrow(tempscores))
{
points(ellipse(varcov, centre=tempscores[l,], level=0.95), type="l", col="grey50")
}
points(tempscores[,1], tempscores[,2], cex=1, pch=16, font=5, col=1)
legend("topleft", bty = "n", c("95% Posterior Set"), col = "grey50", lty = c(1))
if(j < choose(q,(q-2)))
{
ask(msg = "Press <RETURN> to view the scores plot for the next pair of dimensions: ")
}
if(c2 == q){c1<-c1+1; c2<-c1}
} #j
if((g > 1) & (k < g))
{
ask(msg = "Press <RETURN> to view the scores plot for the next group: ")
}
} #k
}else{
for(k in 1:g)
{
sigma<-(sig)*solve((t(loadings[,,k])%*%loadings[,,k]) + (sig*diag(q)))
c1<-1
c2<-1
for(j in 1:choose(q,(q-2)))
{
c2<-c2+1
tempscores<-cbind(scores[[k]][,c1], scores[[k]][, c2])
varcov<-matrix(c(sigma[c1,c1], sigma[c1,c2], sigma[c2,c1], sigma[c2,c2]), 2, 2, byrow=TRUE)
plot(tempscores[,1], tempscores[,2], xlim=c(min(tempscores[,1])-1,max(tempscores[,1])+1), ylim=c(min(tempscores[,2])-1, max(tempscores[,2])+1), type="n", xlab=paste("PC",c1, sep=""), ylab=paste("PC",c2, sep=""), main=paste("Group ", k, sep=""))
for(l in 1:nrow(tempscores))
{
points(ellipse(varcov, centre=tempscores[l,], level=0.95), type="l", col="grey50")
}
points(tempscores[,1], tempscores[,2], cex=1, pch=rep(15:26)[group[output$clustering==k]], font=5, col=group[output$clustering==k])
legend("topleft", bty = "n", c("95% Posterior Set"), col = "grey50", lty = c(1))
if(gplegend == TRUE)
{
legend("topright", bty = "n", c(paste("Treatment Group ", c(gpnames), sep="")), col = 1:g, lty = c(rep(0,length(gpnames))), pch = rep(15:26)[as.numeric(names(table(group)))])
}
if(j < choose(q,(q-2)))
{
ask(msg = "Press <RETURN> to view the scores plot for the next pair of dimensions: ")
}
if(c2 == q){c1<-c1+1; c2<-c1}
} #j
if((g > 1) & (k < g))
{
ask(msg = "Press <RETURN> to view the scores plot for the next group: ")
}
} #k
}#else
}#if
} # End of plot.mppca.scores
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.