Nothing
if (interactive()){
### Uncertainty in detection with equal abundances
# Number of resampling iterations for generating confidence intervals (set
# low for example)
nSamplesCMR <- 100
nSimulationsCMR <- 10 # Set low for example-try length(cmrExamples) to run all
originPos13 <- matrix(c(rep(seq(-99, -81, 2), each = 10),
rep(seq(49, 31, -2), 10)), 100, 2)
targetPos13 <- matrix(c(rep(seq(-79, -61, 2), each = 10),
rep(seq(9, -9, -2), 10)), 100, 2)
originPosCMR <- rowsum(originPos13, c(rep(1:2, 5, each = 5),
rep(3:4, 5, each = 5))) / 25
originPosCMR
targetPosCMR <- rowsum(targetPos13, c(rep(1:2, 5, each = 5),
rep(3:4, 5, each = 5))) / 25
targetPosCMR
originDist <- distFromPos(originPosCMR, 'ellipsoid')
targetDist <- distFromPos(targetPosCMR, 'ellipsoid')
originRelAbundTrue <- rep(0.25, 4)
# the second intermediate psi scenario, the "low" level
psiTrue <- samplePsis[["Low"]]
trueMC <- calcMC(originDist, targetDist, psiTrue, originRelAbundTrue)
trueMC
# Storage matrix for samples
cmrMCSample <- matrix(NA, nSamplesCMR, nSimulationsCMR)
summaryCMR <- data.frame(Simulation = 1:nSimulationsCMR, True=trueMC, estimate=NA,
mean=NA, median=NA, se=NA, lcl.simple=NA, ucl.simple=NA,
lcl.BC=NA, ucl.BC=NA)
for (r in 1:nSimulationsCMR) {
cat("Simulation",r,"of",nSimulationsCMR,"\n")
fm <- cmrExamples[[r]]
results <- estMC(originRelAbund = originRelAbundTrue, psi = fm,
originDist = originDist, targetDist = targetDist,
originSites = 5:8, targetSites = c(3,2,1,4),
nSamples = nSamplesCMR, verbose = 0)
cmrMCSample[ , r] <- results$sampleMC
summaryCMR$estimate[r] <- results$pointMC
summaryCMR$mean[r] <- results$meanMC
summaryCMR$median[r] <- results$medianMC
summaryCMR$se[r] <- results$seMC
# Calculate confidence intervals using quantiles of sampled MC
summaryCMR[r, c('lcl.simple', 'ucl.simple')] <- results$simpleCI
summaryCMR[r, c('lcl.BC', 'ucl.BC')] <- results$bcCI
}
summaryCMR <- transform(summaryCMR, coverage.simple = (True>=lcl.simple &
True<=ucl.simple),
coverage.BC=(True>=lcl.BC & True<=ucl.BC))
summaryCMR
summary(summaryCMR)
biasCMR <- mean(summaryCMR$estimate) - trueMC
biasCMR
mseCMR <- mean((summaryCMR$estimate - trueMC)^2)
mseCMR
rmseCMR <- sqrt(mseCMR)
rmseCMR
### Simulation of BBS data to quantify uncertainty in relative abundance
nSamplesAbund <- 700 #1700 are stored
nSimulationsAbund <- 10
# Storage matrix for samples
abundMCSample <- matrix(NA, nSamplesAbund, nSimulationsAbund)
summaryAbund <- data.frame(Simulation = 1:nSimulationsAbund, True = trueMC,
estimate = NA, mean = NA, median = NA, se = NA,
lcl.simple = NA, ucl.simple = NA,
lcl.BC = NA, ucl.BC = NA, lclHPD = NA, uclHPD = NA)
for (r in 1:nSimulationsAbund) {
cat("Simulation",r,"of",nSimulationsAbund,"\n")
row0 <- nrow(abundExamples[[r]]) - nSamplesAbund
results <- estMC(originRelAbund = abundExamples[[r]], psi = psiTrue,
originDist = originDist, targetDist = targetDist,
row0 = row0, nSamples = nSamplesAbund, verbose = 1)
abundMCSample[ , r] <- results$sampleMC
summaryAbund$estimate[r] <- results$pointMC
summaryAbund$mean[r] <- results$meanMC
summaryAbund$median[r] <- results$medianMC
summaryAbund$se[r] <- results$seMC
# Calculate confidence intervals using quantiles of sampled MC
summaryAbund[r, c('lcl.simple', 'ucl.simple')] <- results$simpleCI
summaryAbund[r, c('lcl.BC', 'ucl.BC')] <- results$bcCI
summaryAbund[r, c('lclHPD', 'uclHPD')] <- results$hpdCI
}
summaryAbund <- transform(summaryAbund, coverage.simple = (True >= lcl.simple &
True <= ucl.simple),
coverage.BC=(True>=lcl.BC & True<=ucl.BC),
coverage.HPD=(True>=lclHPD & True<=uclHPD))
summaryAbund
summary(summaryAbund)
biasAbund <- mean(summaryAbund$estimate) - trueMC
biasAbund
mseAbund <- mean((summaryAbund$estimate - trueMC)^2)
mseAbund
rmseAbund <- sqrt(mseAbund)
rmseAbund
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.