Nothing
\donttest{
set.seed(101)
# Uncertainty in detection (RMark estimates)
# Number of resampling iterations for generating confidence intervals
nSamplesCMR <- 100
nSimulationsCMR <- 10
# the second intermediate psi scenario, the "low" level
psiTrue <- samplePsis[["Low"]]
originRelAbundTrue <- rep(0.25, 4)
trueNMC <- calcNMC(psiTrue, originRelAbund = originRelAbundTrue)
trueNMC
# Storage matrix for samples
cmrNMCSample <- matrix(NA, nSamplesCMR, nSimulationsCMR)
summaryCMR <- data.frame(Simulation = 1:nSimulationsCMR, True=trueNMC$NMC,
mean=NA, se=NA, lcl=NA, ucl=NA)
# Get 'RMark' psi estimates and estimate MC from each
for (r in 1:nSimulationsCMR) {
cat("Simulation",r,"of",nSimulationsCMR,"\n")
# Note: getCMRexample() requires a valid internet connection and that GitHub
# is accessible
fm <- getCMRexample(r)
results <- estNMC(psi = fm,
originSites = 5:8, targetSites = c(3,2,1,4),
nSamples = nSamplesCMR, verbose = 0)
cmrNMCSample[ , r] <- results$NMC$sample
summaryCMR$mean[r] <- results$NMC$mean
summaryCMR$se[r] <- results$NMC$se
# Calculate confidence intervals using quantiles of sampled MC
summaryCMR[r, c('lcl', 'ucl')] <- results$NMC$simpleCI
}
summaryCMR <- transform(summaryCMR, coverage = (True>=lcl & True<=ucl))
summaryCMR
summary(summaryCMR)
biasCMR <- mean(summaryCMR$mean) - trueNMC$NMC
biasCMR
mseCMR <- mean((summaryCMR$mean - trueNMC$NMC)^2)
mseCMR
rmseCMR <- sqrt(mseCMR)
rmseCMR
# Simulation of BBS data to quantify uncertainty in relative abundance
nSamplesAbund <- 700 #1700 are stored
nSimulationsAbund <- 10
#\dontrun{
# nSamplesAbund <- 1700
#}
# Storage matrix for samples
abundNMCaSample <- matrix(NA, nSamplesAbund, nSimulationsAbund)
summaryAbund <- data.frame(Simulation = 1:nSimulationsAbund,
True = trueNMC$NMCa,
mean = NA, se = NA, lcl = NA, ucl = NA)
for (r in 1:nSimulationsAbund) {
cat("Simulation",r,"of",nSimulationsAbund,"\n")
row0 <- nrow(abundExamples[[r]]) - nSamplesAbund
results <- estNMC(originRelAbund = abundExamples[[r]], psi = psiTrue,
row0 = row0, nSamples = nSamplesAbund, verbose = 2)
abundNMCaSample[ , r] <- results$NMCa$sample
summaryAbund$mean[r] <- results$NMCa$mean
summaryAbund$se[r] <- results$NMCa$se
# Calculate confidence intervals using quantiles of sampled MC
summaryAbund[r, c('lcl', 'ucl')] <- results$NMCa$simpleCI
}
summaryAbund <- transform(summaryAbund, coverage = (True >= lcl & True <= ucl))
summaryAbund
summary(summaryAbund)
biasAbund <- mean(summaryAbund$mean) - trueNMC$NMCa
biasAbund
mseAbund <- mean((summaryAbund$mean - trueNMC$NMCa)^2)
mseAbund
rmseAbund <- sqrt(mseAbund)
rmseAbund
# Ovenbird example with GL and GPS data
data(OVENdata) # Ovenbird
nSamplesGLGPS <- 100 # Number of bootstrap iterations, set low for example
# Estimate transition probabilities
Combined.psi<-estTransition(isGL=OVENdata$isGL, #Light-level geolocator (T/F)
isTelemetry = !OVENdata$isGL,
geoBias = OVENdata$geo.bias, # Light-level GL location bias
geoVCov = OVENdata$geo.vcov, # Location covariance matrix
targetSites = OVENdata$targetSites, # Nonbreeding/target sites
originSites = OVENdata$originSites, # Breeding/origin sites
originPoints = OVENdata$originPoints, # Capture Locations
targetPoints = OVENdata$targetPoints, #Device target locations
verbose = 3, # output options
nSamples = nSamplesGLGPS, # This is set low for example
resampleProjection = sf::st_crs(OVENdata$targetPoints),
nSim = 1000)
# Can estimate NMC from previous psi estimate
Combo.NMC1 <- estNMC(psi = Combined.psi,
nSamples = nSamplesGLGPS)
Combo.NMC1
# Doesn't have to be an estPsi object - can simply be array of psi samples
Combo.MC2 <- estNMC(psi = Combined.psi$psi$sample, # Array of samples
originNames = Combined.psi$input$originNames,
nSamples = nSamplesGLGPS)
Combo.MC2
# Can estimate NMC from previous psi estimate and abundance estimate
Combo.NMC3 <- estNMC(psi = Combined.psi,
originRelAbund = OVENdata$originRelAbund,
nSamples = nSamplesGLGPS)
Combo.NMC3
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.