Nothing
#' Simulation function of quantitative multigroup data under a
#' multivariate normal distribution
#'
#'
#' @importFrom mvtnorm rmvnorm
#' @importFrom rlist list.remove
#' @param g An vector of the size of each group
#' @param mean1 An vector of the population means structure
#' @param d distance d for the structure of population means
#' @param n.var 2x1 dimension vector whose first component is the number of
#' random variables to simulate and the second component number
#' of noise variables to simulate
#' @param sds2 An vector of the variances to simulate for each group noise variables
#' @param corr An vector of the correlation to simulate for each group and noise variables
#'
#' @return \strong{return an grafics}
#'
#' @examples
#'fun.sim(g=c(20,20),mean1=2,d=0,sds2=c(1,1,1),corr=c(0.5,0.5,0),n.var=c(50,1))
#' @export
#'
fun.sim<-function(g,mean1,d,n.var,sds2,corr)
{
means<-vector();
M<-length(g)
x1<-NULL
liscovar<-vector("list", M)
mu<-NULL
lisx<-NULL
mu2<-NULL
for(j in 1:length(g))
{
if(j==1)
{
means[j]<-mean1
}
else{
means[j]<-mean1+(j-1)*d
}
}
means<-c(means,0)
for(i in 1:(length(g)+1))
{
if(i<=length(g)){
covar=matrix(NA, nrow=n.var[1], ncol=n.var[1], byrow=FALSE)
covar[lower.tri(covar,diag=F)]<-corr[i]*sqrt(sds2[i]*sds2[i])
covar[upper.tri(covar)]<-corr[i]*sqrt(sds2[i]*sds2[i])
diag(covar)<-sqrt(sds2[i]*sds2[i])
liscovar[[i]]<-covar
if(i==1){
mu[[i]]<- seq(from =means[i],to=means[i]+2,length=n.var[1])
x1[[i]] <- rmvnorm(g[i], mean =mu[[i]],sigma=liscovar[[i]])
}
else if(i==2){
mu[[i]]<- seq(from =means[i],to=means[i]+2,length=n.var[1])
x1[[i]] <- rmvnorm(g[i], mean =mu[[i]],sigma=liscovar[[i]])
}
else if(i==3){
mu[[i]]<- seq(from =means[i],to=means[i]+2,length=n.var[1])
x1[[i]] <- rmvnorm(g[i], mean =mu[[i]],sigma=liscovar[[i]])
}
else if(i==4){
mu[[i]]<- seq(from =means[i],to=means[i]+2,length=n.var[1])
x1[[i]] <- rmvnorm(g[i], mean =mu[[i]],sigma=liscovar[[i]])
}
else if(i==5){
mu[[i]]<- seq(from =means[i],to=means[i]+2,length=n.var[1])
x1[[i]] <- rmvnorm(g[i], mean =mu[[i]],sigma=liscovar[[i]])
}
#mu[[i]]<- rep(means[i],n.var[1])
#x1[[i]] <- rmvnorm(g[i], mean =mu[[i]],sigma=liscovar[[i]])
}
else{
covar=matrix(NA, nrow=n.var[2], ncol=n.var[2], byrow=FALSE)
covar[lower.tri(covar,diag=F)]<-corr[i]*sqrt(sds2[i]*sds2[i])
covar[upper.tri(covar)]<-corr[i]*sqrt(sds2[i]*sds2[i])
diag(covar)<-sqrt(sds2[i]*sds2[i])
mu2<-rep(means[i],n.var[2])
x1[[i]] <- rmvnorm(sum(g), mean = mu2,sigma=covar)
}
}
x2<-list.remove(x1,c(length(g)+1))
grp <- factor(rep(LETTERS[1:length(g)],g))
output <- do.call(rbind,lapply(x2,matrix,ncol=n.var[1],byrow=F))
x3<-x1[[length(g)+1]]
x4<-as.data.frame(cbind(output,x3,grp))
for(i in 1:length(g)){
lisx[[i]]<- subset(x4,x4$grp==i, select=-grp)
}
return(list(lisx=lisx,grp=as.factor(as.numeric(grp)),x=data.frame(x4),mu=mu,liscovar=liscovar,mu2=mu2))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.