Nothing
#' @title PipeOpVIM_regrImp
#' @name PipeOpVIM_regrImp
#'
#' @description
#' Implements Regression Imputation methods as mlr3 pipeline, more about RI \code{\link{autotune_VIM_regrImp}}.
#'
#' @section Input and Output Channels:
#' Input and output channels are inherited from \code{\link{PipeOpImpute}}.
#'
#'
#' @section Parameters:
#' The parameters include inherited from [`PipeOpImpute`], as well as: \cr
#' \itemize{
#' \item \code{id} :: \code{character(1)}\cr
#' Identifier of resulting object, default \code{"imput_VIM_regrImp"}.
#' \item \code{robust} :: \code{logical(1)}\cr
#' TRUE/FALSE: whether to use robust regression, default \code{FALSE}.
#' \item \code{mod_cat} :: \code{logical(1)}\cr
#' TRUE/FALSE if TRUE for categorical variables the level with the highest prediction probability is selected, otherwise it is sampled according to the probabilities, default \code{FALSE}.
#' \item \code{use_imputed} :: \code{logical(1)}\cr
#' TRUE/FALSe: if TURE, already imputed columns will be used to impute others, default \code{FALSE}.
#' \item \code{out_fill} :: \code{character(1)}\cr
#' Output log file location. If file already exists log message will be added. If NULL no log will be produced, default \code{NULL}.
#' }
#'
#' @examples
#' {
#' graph <- PipeOpVIM_regrImp$new() %>>% mlr3learners::LearnerClassifGlmnet$new()
#' graph_learner <- GraphLearner$new(graph)
#'
#' # Task with NA
#'
#' resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
#' }
#' @export
PipeOpVIM_regrImp <- R6::R6Class("VIM_regrImp_imputation",
lock_objects = FALSE,
inherit = PipeOpImpute, # inherit from PipeOp
public = list(
initialize = function(id = "impute_VIM_regrImp_B", robust = FALSE, mod_cat = FALSE, use_imputed = FALSE, out_file = NULL) {
super$initialize(id,
whole_task_dependent = TRUE, packages = "NADIA", param_vals = list(
robust = robust, mod_cat = mod_cat,
use_imputed = use_imputed, out_file = out_file),
param_set = ParamSet$new(list(
"robust" = ParamLgl$new("robust", default = FALSE, tags = "VIM_regrImp"),
"mod_cat" = ParamLgl$new("mod_cat", default = FALSE, tags = "VIM_regrImp"),
"use_imputed" = ParamLgl$new("use_imputed", default = FALSE, tags = "VIM_regrImp"),
"out_file" = ParamUty$new("out_file", default = NULL, tags = "VIM_regrImp")
))
)
self$imputed <- FALSE
self$column_counter <- NULL
self$data_imputed <- NULL
}), private = list(
.train_imputer = function(feature, type, context) {
imp_function <- function(data_to_impute) {
data_to_impute <- as.data.frame(data_to_impute)
# prepering arguments for function
col_type <- 1:ncol(data_to_impute)
for (i in col_type) {
col_type[i] <- class(data_to_impute[, i])
}
percent_of_missing <- 1:ncol(data_to_impute)
for (i in percent_of_missing) {
percent_of_missing[i] <- (sum(is.na(data_to_impute[, i])) / length(data_to_impute[, 1])) * 100
}
col_miss <- colnames(data_to_impute)[percent_of_missing > 0]
col_no_miss <- colnames(data_to_impute)[percent_of_missing == 0]
data_imputed <- NADIA::autotune_VIM_regrImp(data_to_impute,
percent_of_missing = percent_of_missing, col_type = col_type,
robust = self$param_set$values$robust,
mod_cat = self$param_set$values$mod_cat, use_imputed = self$param_set$values$use_imputed,
out_file = self$param_set$values$out_file)
return(data_imputed)
}
self$imputed_predict <- TRUE
self$flag <- "train"
if (!self$imputed) {
self$column_counter <- ncol(context) + 1
self$imputed <- TRUE
data_to_impute <- cbind(feature, context)
self$data_imputed <- imp_function(data_to_impute)
colnames(self$data_imputed) <- self$state$context_cols
}
if (self$imputed) {
self$column_counter <- self$column_counter - 1
}
if (self$column_counter == 0) {
self$imputed <- FALSE
}
self$train_s <- TRUE
self$action <- 3
return(list("data_imputed" = self$data_imputed, "train_s" = self$train_s, "flag" = self$flag, "imputed_predict" = self$imputed_predict, "imputed" = self$imputed, "column_counter" = self$column_counter))
},
.impute = function(feature, type, model, context) {
if (is.null(self$action)) {
self$train_s <- TRUE
self$flag <- "train"
self$imputed_predict <- TRUE
self$action <- 3
self$data_imputed <- model$data_imputed
self$imputed <- FALSE
self$column_counter <- 0
}
imp_function <- function(data_to_impute) {
data_to_impute <- as.data.frame(data_to_impute)
# prepering arguments for function
col_type <- 1:ncol(data_to_impute)
for (i in col_type) {
col_type[i] <- class(data_to_impute[, i])
}
percent_of_missing <- 1:ncol(data_to_impute)
for (i in percent_of_missing) {
percent_of_missing[i] <- (sum(is.na(data_to_impute[, i])) / length(data_to_impute[, 1])) * 100
}
col_miss <- colnames(data_to_impute)[percent_of_missing > 0]
col_no_miss <- colnames(data_to_impute)[percent_of_missing == 0]
data_imputed <- NADIA::autotune_VIM_regrImp(data_to_impute,
percent_of_missing = percent_of_missing, col_type = col_type,
robust = self$param_set$values$robust,
mod_cat = self$param_set$values$mod_cat, use_imputed = self$param_set$values$use_imputed,
out_file = self$param_set$values$out_file)
return(data_imputed)
}
if (self$imputed) {
feature <- self$data_imputed[, setdiff(colnames(self$data_imputed), colnames(context))]
}
if ((nrow(self$data_imputed) != nrow(context) | !self$train_s) & (self$flag == "train")) {
self$imputed_predict <- FALSE
self$flag <- "predict"
}
if (!self$imputed_predict) {
data_to_impute <- cbind(feature, context)
self$data_imputed <- imp_function(data_to_impute)
colnames(self$data_imputed)[1] <- setdiff(self$state$context_cols, colnames(context))
self$imputed_predict <- TRUE
}
if (self$imputed_predict & self$flag == "predict") {
feature <- self$data_imputed[, setdiff(colnames(self$data_imputed), colnames(context))]
}
if (self$column_counter == 0 & self$flag == "train") {
feature <- self$data_imputed[, setdiff(colnames(self$data_imputed), colnames(context))]
self$flag <- "predict"
self$imputed_predict <- FALSE
}
self$train_s <- FALSE
return(feature)
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.