Nothing
#' @title PipeOpmissRanger
#'
#' @name PipeOpmissRanger
#'
#' @description
#' Implements missRanger methods as mlr3 pipeline, more about missRanger \code{\link{autotune_missRanger}}.
#'
#' @section Input and Output Channels:
#' Input and output channels are inherited from \code{\link{PipeOpImpute}}.
#'
#'
#' @section Parameters:
#' The parameters include inherited from [`PipeOpImpute`], as well as: \cr
#' \itemize{
#' \item \code{id} :: \code{character(1)}\cr
#' Identifier of resulting object, default \code{"imput_missRanger"}.
#' \item \code{mtry} :: \code{integer(1)}\cr
#' Sample fraction used by missRanger. This param isn't optimized automatically. If NULL default value from ranger package will be used, \code{NULL}.
#' \item \code{num.trees} :: \code{integer(1)}\cr
#' Number of trees. If optimize == TRUE. Param set seq(10,num.trees,iter) will be used, default \code{500}
#' \item \code{pmm.k} :: \code{integer(1)}\cr
#' Number of candidate non-missing values to sample from in the predictive mean matching step. 0 to avoid this step. If optimize=TRUE params set: sample(1:pmm.k, iter) will be used. If pmm.k=0, missRanger is the same as missForest, default \code{5}.
#' \item \code{random.seed} :: \code{integer(1)}\cr
#' Random seed, default \code{123}.
#' \item \code{iter} :: \code{integer(1)}\cr
#' Number of iterations for a random search, default \code{10}.
#' \item \code{optimize} :: \code{logical(1)}\cr
#' If set TRUE, function will optimize parameters of imputation automatically. If parameters will be tuned by other method, should be set to FALSE, default \code{FALSE}.
#' \item \code{out_fill} :: \code{character(1)}\cr
#' Output log file location. If file already exists log message will be added. If NULL no log will be produced, default \code{NULL}.
#' }
#'
#' @examples
#' \donttest{
#'
#' # Using debug learner for example purpose
#'
#' graph <- PipeOpmissRanger$new() %>>% LearnerClassifDebug$new()
#' graph_learner <- GraphLearner$new(graph)
#'
#' # Task with NA
#'
#' resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
#' }
#' @export
PipeOpmissRanger <- R6::R6Class("missRanger_imputation",
lock_objects = FALSE,
inherit = PipeOpImpute,
public = list(
initialize = function(id = "impute_missRanger_B", maxiter = 10, random.seed = 123, mtry = NULL, num.trees = 500,
pmm.k = 5, optimize = FALSE, iter = 10, out_file = NULL) {
super$initialize(id,
whole_task_dependent = TRUE, packages = "NADIA", param_vals = list(
maxiter = maxiter, random.seed = random.seed, mtry = mtry, num.trees = num.trees,
pmm.k = pmm.k, iter = iter, optimize = optimize, out_file = out_file),
param_set = ParamSet$new(list(
"maxiter" = ParamInt$new("maxiter", lower = 1, upper = Inf, default = 10, tags = "missRanger"),
"random.seed" = ParamInt$new("random.seed", default = 123, tags = "missRanger"),
"mtry" = ParamUty$new("mtry", default = NULL, tags = "missRanger"),
"num.trees" = ParamInt$new("num.trees", default = 500, lower = 10, upper = Inf, tags = "missRanger"),
"pmm.k" = ParamInt$new("pmm.k", lower = 0, upper = Inf, default = 5, tags = "missRagner"),
"optimize" = ParamLgl$new("optimize", default = FALSE, tags = "missRagner"),
"iter" = ParamInt$new("iter", lower = 1, upper = Inf, default = 10, tags = "missRanger"),
"out_file" = ParamUty$new("out_file", default = NULL, tags = "missRanger")
))
)
self$imputed <- FALSE
self$column_counter <- NULL
self$data_imputed <- NULL
}), private = list(
.train_imputer = function(feature, type, context) {
imp_function <- function(data_to_impute) {
data_to_impute <- as.data.frame(data_to_impute)
# prepering arguments for function
col_type <- 1:ncol(data_to_impute)
for (i in col_type) {
col_type[i] <- class(data_to_impute[, i])
}
percent_of_missing <- 1:ncol(data_to_impute)
for (i in percent_of_missing) {
percent_of_missing[i] <- (sum(is.na(data_to_impute[, i])) / length(data_to_impute[, 1])) * 100
}
col_miss <- colnames(data_to_impute)[percent_of_missing > 0]
col_no_miss <- colnames(data_to_impute)[percent_of_missing == 0]
data_imputed <- NADIA::autotune_missRanger(data_to_impute, percent_of_missing,
maxiter = self$param_set$values$maxiter,
random.seed = self$param_set$values$random.seed, mtry = self$param_set$values$mtry,
num.trees = self$param_set$values$num.trees,
out_file = self$param_set$values$out_file, optimize = self$param_set$values$optimize,
iter = self$param_set$values$iter, pmm.k = self$param_set$values$pmm.k)
return(data_imputed)
}
self$imputed_predict <- TRUE
self$flag <- "train"
if (!self$imputed) {
self$column_counter <- ncol(context) + 1
self$imputed <- TRUE
data_to_impute <- cbind(feature, context)
self$data_imputed <- imp_function(data_to_impute)
colnames(self$data_imputed) <- self$state$context_cols
}
if (self$imputed) {
self$column_counter <- self$column_counter - 1
}
if (self$column_counter == 0) {
self$imputed <- FALSE
}
self$train_s <- TRUE
self$action <- 3
return(list("data_imputed" = self$data_imputed, "train_s" = self$train_s, "flag" = self$flag, "imputed_predict" = self$imputed_predict, "imputed" = self$imputed, "column_counter" = self$column_counter))
},
.impute = function(feature, type, model, context) {
if (is.null(self$action)) {
self$train_s <- TRUE
self$flag <- "train"
self$imputed_predict <- TRUE
self$action <- 3
self$data_imputed <- model$data_imputed
self$imputed <- FALSE
self$column_counter <- 0
}
imp_function <- function(data_to_impute) {
data_to_impute <- as.data.frame(data_to_impute)
# prepering arguments for function
col_type <- 1:ncol(data_to_impute)
for (i in col_type) {
col_type[i] <- class(data_to_impute[, i])
}
percent_of_missing <- 1:ncol(data_to_impute)
for (i in percent_of_missing) {
percent_of_missing[i] <- (sum(is.na(data_to_impute[, i])) / length(data_to_impute[, 1])) * 100
}
col_miss <- colnames(data_to_impute)[percent_of_missing > 0]
col_no_miss <- colnames(data_to_impute)[percent_of_missing == 0]
data_imputed <- NADIA::autotune_missRanger(data_to_impute, percent_of_missing,
maxiter = self$param_set$values$maxiter,
random.seed = self$param_set$values$random.seed, mtry = self$param_set$values$mtry,
num.trees = self$param_set$values$num.trees,
out_file = self$param_set$values$out_file, optimize = self$param_set$values$optimize,
iter = self$param_set$values$iter, pmm.k = self$param_set$values$pmm.k)
return(data_imputed)
}
if (self$imputed) {
feature <- self$data_imputed[, setdiff(colnames(self$data_imputed), colnames(context))]
}
if ((nrow(self$data_imputed) != nrow(context) | !self$train_s) & self$flag == "train") {
self$imputed_predict <- FALSE
self$flag <- "predict"
}
if (!self$imputed_predict) {
data_to_impute <- cbind(feature, context)
self$data_imputed <- imp_function(data_to_impute)
colnames(self$data_imputed)[1] <- setdiff(self$state$context_cols, colnames(context))
self$imputed_predict <- TRUE
}
if (self$imputed_predict & self$flag == "predict") {
feature <- self$data_imputed[, setdiff(colnames(self$data_imputed), colnames(context))]
}
if (self$column_counter == 0 & self$flag == "train") {
feature <- self$data_imputed[, setdiff(colnames(self$data_imputed), colnames(context))]
self$flag <- "predict"
self$imputed_predict <- FALSE
}
self$train_s <- FALSE
return(feature)
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.