Nothing
## ----schunk, setup, include=FALSE---------------------------------------------
knitr::opts_chunk$set(include = FALSE)
library(NADIA)
## ----ochunk, echo=FALSE, fig.align='center', include=TRUE, out.width='100%'----
knitr::include_graphics('rect1029.png')
## ----wchunk, echo=FALSE, fig.align='center', include=TRUE, out.width='100%'----
knitr::include_graphics('B.svg')
## ----pchunk, echo=FALSE, warning=FALSE, include=TRUE, out.width='70%'---------
benchmark_data <- read.csv("benchmark_2-packages.csv")
benchmark_data <- benchmark_data[1:28,]
benchmark_data <- benchmark_data[,-ncol(benchmark_data)]
task_number <- 25
succes <- as.numeric(as.character(unlist(benchmark_data[27,-1,drop=TRUE])))
methods <- colnames(benchmark_data[,-1])
methods <- substr(methods,start = 7,stop = 999)
Resoults <- as.data.frame(matrix(nrow = 2,ncol = 11))
row.names(Resoults) <- c("Succesful tasks","Percent of succesful tasks")
colnames(Resoults) <- methods
Resoults[1,] <- paste(succes,task_number,sep = "/")
Resoults[2,] <- paste0(round(succes/25*100,2),"%")
res<- cbind(methods,t(Resoults))
row.names(res) <- NULL
colnames(res)[1] <- "Package_method"
`%>%` <- magrittr::`%>%`
knitr::kable(res,escape = FALSE,format = 'html',caption = "NADIA test results") %>% kableExtra::column_spec(1:3,bold=TRUE) %>% kableExtra::row_spec(c(1,9),color = "white",background = "#FF5733") %>% kableExtra::row_spec(c(2,4,5,11),color = "white",background = "#F5A9A9")
## ----Lrn, cache=TRUE, include=FALSE-------------------------------------------
graph <- PipeOpMice$new()%>>% lrn('classif.debug')
Learner <- GraphLearner$new(graph)
Learner$param_set$values$classif.debug.error_train =1
Learner$param_set$values$classif.debug.error_predict =1
## ----d, echo=TRUE, include=TRUE,cache=TRUE, dependson=-1----------------------
# Encaplustion with Evalute
Learner$encapsulate=c(train="evaluate",predict="evaluate")
# Resampling with errors and presenting errors
resample(tsk("pima"),Learner,rsmp("cv",folds=5))$errors
## ----kchunk,dependson=-1,cache=T ,echo=TRUE,dependson=-1,include=TRUE---------
# encaplustion with callr
Learner$encapsulate=c(train="callr",predict="callr")
# Resampling with errors and presenting errors
resample(tsk("pima"),Learner,rsmp("cv",folds=5))$errors
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.