Nothing
pairwise <- function(x,method="REML"){
xms <- x$measure
if(xms=="OR"||xms=="RR"||xms=="RD"||xms=="HR"){
study <- x$study
treat <- x$treat
d <- x$d
n <- x$n
study <- as.numeric(factor(study))
data1 <- data.frame(study,treat,d,n)
####
treat1 <- sort(unique(treat))
N <- length(unique(study))
p <- max(treat)
q <- p - 1
des <- n.arm <- numeric(N)
Ti <- NULL
for(i in 1:N){
wi <- which(study==i)
ti <- sort(treat[wi],decreasing=FALSE)
Ti[[i]] <- ti
di <- ti[1]
for(j in 2:length(wi)) di <- paste0(di,"-",ti[j])
des[i] <- di
n.arm[i] <- length(wi)
}
des0 <- sort(unique(des))
Q1 <- rname <- NULL
for(k in 1:(p-1)){
for(h in (k+1):p){
pair <- paste0(k,"-",h)
i.pair <- str_detect(des, pattern=pair)
w.pair <- which(i.pair)
n.i <- sum(i.pair)
if(sum(i.pair)>=1){
d1 <- d2 <- n1 <- n2 <- NULL
for(l in 1:n.i){
w.l <- w.pair[l]
w1 <- which((data1$study==w.l)&(data1$treat==k))
w2 <- which((data1$study==w.l)&(data1$treat==h))
d1 <- c(d1,data1$d[w1])
d2 <- c(d2,data1$d[w2])
n1 <- c(n1,data1$n[w1])
n2 <- c(n2,data1$n[w2])
}
ai <- d1
bi <- n1 - d1
ci <- d2
di <- n2 - d2
if((length(ai)>=1)&&(length(ci)>=1)){
ei <- escalc(xms,ai=ci,bi=di,ci=ai,di=bi)
rmi <- rma(ei$yi,ei$vi,method=method)
if(n.i>=3) egi <- regtest(rmi, model="lm")
R1 <- c(rmi$beta,rmi$ci.lb,rmi$ci.ub)
if(xms=="OR"||xms=="RR") R1 <- exp(R1)
if(n.i<3) R2 <- c(rmi$pval,rmi$tau2,.01*rmi$I2,rmi$H2,NA)
if(n.i>=3) R2 <- c(rmi$pval,rmi$tau2,.01*rmi$I2,rmi$H2,egi$pval)
R3 <- c(n.i,R1,R2)
Q1 <- rbind(Q1,R3)
rname <- c(rname,paste0(k," vs. ",h))
}
}
}
}
if(is.null(rname)==FALSE){
rownames(Q1) <- rname
Q2 <- Q1[,1:5]
colnames(Q2) <- c("N","estimate","95%CL","95%CU","P-value")
Q3 <- Q1[,c(1,6:8)]
colnames(Q3) <- c("N","tau^2","I^2","H^2")
Q4 <- t(t(Q1[,c(1,9)]))
colnames(Q4) <- c("N","P-value" )
R4 <- list("coding"=x$coding,"measure"=xms,"Summary effect measures"=Q2,"Heterogeneity measures"=Q3,"Egger test"=Q4)
return(R4)
}
if(is.null(rname)){
R9 <- "There are no corresponding pairs that can be analyzed on the network."
return(R9)
}
}
if(xms=="MD"||xms=="SMD"){
study <- x$study
treat <- x$treat
m <- x$m
s <- x$s
n <- x$n
study <- as.numeric(factor(study))
data1 <- data.frame(study,treat,m,s,n)
####
treat1 <- sort(unique(treat))
N <- length(unique(study))
p <- max(treat)
q <- p - 1
des <- n.arm <- numeric(N)
Ti <- NULL
for(i in 1:N){
wi <- which(study==i)
ti <- sort(treat[wi],decreasing=FALSE)
Ti[[i]] <- ti
di <- ti[1]
for(j in 2:length(wi)) di <- paste0(di,"-",ti[j])
des[i] <- di
n.arm[i] <- length(wi)
}
des0 <- sort(unique(des))
Q1 <- rname <- NULL
for(k in 1:(p-1)){
for(h in (k+1):p){
pair <- paste0(k,"-",h)
i.pair <- str_detect(des, pattern=pair)
w.pair <- which(i.pair)
n.i <- sum(i.pair)
if(sum(i.pair)>=1){
m1 <- m2 <- s1 <- s2 <- n1 <- n2 <- NULL
for(l in 1:n.i){
w.l <- w.pair[l]
w1 <- which((data1$study==w.l)&(data1$treat==k))
w2 <- which((data1$study==w.l)&(data1$treat==h))
m1 <- c(m1,data1$m[w1])
m2 <- c(m2,data1$m[w2])
s1 <- c(s1,data1$s[w1])
s2 <- c(s2,data1$s[w2])
n1 <- c(n1,data1$n[w1])
n2 <- c(n2,data1$n[w2])
}
if((length(m1)>=1)&&(length(m2)>=1)){
ei <- escalc(xms,m1i=m2,sd1i=s2,n1i=n2,m2i=m1,sd2i=s1,n2i=n1)
rmi <- rma(ei$yi,ei$vi,method=method)
if(n.i>=3) egi <- regtest(rmi, model="lm")
R1 <- c(rmi$beta,rmi$ci.lb,rmi$ci.ub)
if(n.i<3) R2 <- c(rmi$pval,rmi$tau2,.01*rmi$I2,rmi$H2,NA)
if(n.i>=3) R2 <- c(rmi$pval,rmi$tau2,.01*rmi$I2,rmi$H2,egi$pval)
R3 <- c(n.i,R1,R2)
Q1 <- rbind(Q1,R3)
rname <- c(rname,paste0(k," vs. ",h))
}
}
}
}
if(is.null(rname)==FALSE){
rownames(Q1) <- rname
Q2 <- Q1[,1:5]
colnames(Q2) <- c("N","estimate","95%CL","95%CU","P-value")
Q3 <- Q1[,c(1,6:8)]
colnames(Q3) <- c("N","tau^2","I^2","H^2")
Q4 <- t(t(Q1[,c(1,9)]))
colnames(Q4) <- c("N","P-value" )
R4 <- list("coding"=x$coding,"measure"=xms,"Summary effect measures"=Q2,"Heterogeneity measures"=Q3,"Egger test"=Q4)
return(R4)
}
if(is.null(rname)){
R9 <- "There are no corresponding pairs that can be analyzed on the network."
return(R9)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.