Nothing
#' pruning of class \code{ODT}
#'
#' Prune \code{ODT} from bottom to top with validation data based on prediction error.
#'
#' @param obj an object of class \code{ODT}.
#' @param X An n by d numeric matrix (preferable) or data frame is used to prune the object of class \code{ODT}.
#' @param y A response vector of length n.
#' @param MaxDepth The maximum depth of the tree after pruning. (Default 1)
#' @param ... Optional parameters to be passed to the low level function.
#'
#' @details The leftmost value of the horizontal axis indicates the tree without pruning, while the rightmost value indicates the data without splitting and using the average value as the predicted value.
#'
#' @return An object of class \code{ODT} and \code{prune.ODT}.
#' \itemize{
#' \item{\code{ODT} The same result as \code{ODT}.}
#' \item{\code{pruneError} Error of validation data after each pruning, misclassification rate (MR) for classification or mean square error (MSE) for regression.
#' The maximum value indicates the tree without pruning, and the minimum value (0) indicates indicates the data without splitting and using the average value as the predicted value.}
#' }
#' @seealso \code{\link{ODT}} \code{\link{plot.prune.ODT}} \code{\link{prune.ODRF}} \code{\link{online.ODT}}
#'
#' @examples
#' # Classification with Oblique Decision Tree
#' data(seeds)
#' set.seed(221212)
#' train <- sample(1:209, 100)
#' train_data <- data.frame(seeds[train, ])
#' test_data <- data.frame(seeds[-train, ])
#' index <- seq(floor(nrow(train_data) / 2))
#' tree <- ODT(varieties_of_wheat ~ ., train_data[index, ], split = "entropy")
#' prune_tree <- prune(tree, train_data[-index, -8], train_data[-index, 8])
#' pred <- predict(prune_tree, test_data[, -8])
#' # classification error
#' (mean(pred != test_data[, 8]))
#'
#' # Regression with Oblique Decision Tree
#' data(body_fat)
#' set.seed(221212)
#' train <- sample(1:252, 100)
#' train_data <- data.frame(body_fat[train, ])
#' test_data <- data.frame(body_fat[-train, ])
#' index <- seq(floor(nrow(train_data) / 2))
#' tree <- ODT(Density ~ ., train_data[index, ], split = "mse")
#' prune_tree <- prune(tree, train_data[-index, -1], train_data[-index, 1])
#' pred <- predict(prune_tree, test_data[, -1])
#' # estimation error
#' mean((pred - test_data[, 1])^2)
#'
#' @keywords tree prune
#' @rdname prune.ODT
#' @aliases prune.ODT
#' @method prune ODT
#' @export
prune.ODT <- function(obj, X, y, MaxDepth = 1, ...) {
if (length(obj[["structure"]][["nodeDepth"]]) == 1) {
stop("No tree structure to use 'online'!")
}
structure <- obj$structure
if (!is.null(MaxDepth)) {
MaxDepth <- min(MaxDepth, max(structure$nodeDepth))
}
numNode <- length(structure$nodeCutValue)
# vars=all.vars(obj$terms)
Xcat <- obj$data$Xcat
catLabel <- obj$data$catLabel
if ((sum(Xcat) > 0) && is.null(catLabel)) {
# vars=vars[-(1+seq(length(unlist(catLabel))))]
# }else{
stop("'Xcat!=0' however 'catLabel' does not exist!")
}
# address na values.
Xna <- is.na(X)
if (any(Xna)) {
xj <- which(colSums(Xna) > 0)
warning("There are NA values in columns ", paste(xj, collapse = ", "), " of the data 'X', which will be replaced with the average value.")
for (j in xj) {
X[Xna[, j], j] <- mean(X[, j], na.rm = TRUE)
}
}
Xnew <- as.matrix(X)
ynew <- y
# ynew= data[,setdiff(colnames(data),vars[-1])]
# Xnew= data[,vars[-1]]
# ynew <- data[, 1]
# Xnew <- data[, -1]
# rm(data)
rm(X)
rm(y)
# weights0=c(obj$data$weights,obj$paramList$weights)
# if(!is.null(obj$data$weights))
# Xnew <- Xnew * matrix(weights,length(y),ncol(Xnew))
p <- ncol(Xnew)
n <- nrow(Xnew)
numCat <- 0
if (sum(Xcat) > 0) {
xj <- 1
Xnew1 <- matrix(0, nrow = n, ncol = length(unlist(catLabel))) # initialize training data matrix X
# one-of-K encode each categorical feature and store in X
for (j in seq_along(Xcat)) {
catMap <- which(catLabel[[j]] %in% unique(Xnew[, Xcat[j]]))
indC <- catLabel[[j]][catMap]
Xnewj <- (matrix(Xnew[, Xcat[j]], n, length(indC)) == matrix(indC, n, length(indC), byrow = TRUE)) + 0
if (length(indC) > length(catLabel[[j]])) {
Xnewj <- Xnewj[, seq_along(catLabel[[j]])]
}
xj1 <- xj + length(catLabel[[j]])
Xnew1[, (xj:(xj1 - 1))[catMap]] <- Xnewj
xj <- xj1
}
Xnew <- cbind(Xnew1, apply(Xnew[, -Xcat], 2, as.numeric))
p <- ncol(Xnew)
numCat <- length(unlist(catLabel))
rm(Xnew1)
rm(Xnewj)
}
Xnew <- as.matrix(Xnew)
colnames(Xnew) <- obj$data$varName
# if (!is.null(obj$data$subset)) {
# Xnew <- Xnew[obj$data$subset, ]
# }
# Variable scaling.
if (obj$data$Xscale != "No") {
indp <- (numCat + 1):p
Xnew[, indp] <- (Xnew[, indp, drop = FALSE] - matrix(obj$data$minCol, n, length(indp), byrow = T)) /
matrix(obj$data$maxminCol, n, length(indp), byrow = T)
}
if (obj$data$TreeRandRotate) {
Xnew[, obj$data$rotdims] <- Xnew[, obj$data$rotdims, drop = FALSE] %*% obj$data$rotmat
}
prediction <- predictTree(structure, Xnew, obj$split, obj$Levels)$prediction
if (obj$split != "mse") {
err0 <- mean(prediction != ynew)
} else {
# e.0 = mean((ynew-mean(y))^2)
err0 <- mean((prediction - ynew)^2) # /e.0
# structure$nodeLabel=as.numeric(structure$nodeLabel)
}
# start create pptree.
##############################################################################
cutNode <- which(structure$nodeCutValue != 0)
ncut <- length(cutNode)
pruneError <- matrix(0, ncut + 1, 4)
colnames(pruneError) <- c("cutNode", "numNode", "depth", "error")
# pruneError[1,]=c(1,1,1,err0)
pruneError[ncut + 1, ] <- c(ncut, numNode, max(structure$nodeDepth), err0)
currentNode <- cutNode[ncut]
while ((ncut >= 1) && (structure$nodeDepth[currentNode] >= MaxDepth)) {
nodeRotaMat <- structure$nodeRotaMat
childNode <- structure$childNode
nodeCutValue <- structure$nodeCutValue
# nodeLabel=structure$nodeLabel
nodeNumLabel <- structure$nodeNumLabel
freeNode <- childNode[currentNode]
idx <- c(freeNode, freeNode + 1)
ni <- 1 # id=c()
while (ni <= length(idx)) {
# ni=which(node==idx)
node <- idx[ni]
if (nodeCutValue[node] != 0) {
cn <- childNode[node]
# idx=c(idx,cn,cn+1)
# idx=setdiff(idx,node)
idx <- c(idx, cn, cn + 1)
}
ni <- ni + 1
}
for (ni in seq(length(idx), 1, -1)) {
node <- idx[ni]
if (ni %% 2 == 0) {
nodeRotaMat <- nodeRotaMat[-which(nodeRotaMat[, 2] %in% c(node - 1, node)), , drop = FALSE]
id <- which(nodeRotaMat[, 2] > node)
nodeRotaMat[id, 2] <- nodeRotaMat[id, 2] - 2
}
if (nodeCutValue[node] != 0) {
id <- seq(node)
childNode[-id] <- (childNode[-id] != 0) * (childNode[-id] - 2)
}
}
id <- which(nodeRotaMat[, 2] == currentNode)
nodeRotaMat[id[1], ] <- c(0, currentNode, 0)
if (length(id[-1]) > 0) {
nodeRotaMat <- nodeRotaMat[-id[-1], , drop = FALSE]
}
# id=min(which(nodeRotaMat[,2]==idx[length(idx)]))
# nodeRotaMat[-seq(max(id)),2]=nodeRotaMat[-seq(max(id)),2]-2
# nodeRotaMat=nodeRotaMat[id,,drop = FALSE]
childNode[currentNode] <- 0
childNode[-seq(currentNode)] <- (childNode[-seq(currentNode)] != 0) * (childNode[-seq(currentNode)] - 2)
childNode <- childNode[-idx]
id <- idx[nodeCutValue[idx] == 0]
# id=idx[!idx%in%cutNode]
# nodeLabel[currentNode]=ifelse(obj$split!="mse",nodeLabel[idx][which.max(structure$nodeNumLabel[idx])],
# structure$nodeNumLabel[idx]*nodeLabel[idx]/sum(structure$nodeNumLabel[idx]))
if (obj$split != "mse") {
# nnl=rep(nodeLabel[id],nodeNumLabel[id])
# nnl=table(nnl)
# nodeLabel[currentNode]=names(nnl)[which.max(nnl)]
# nodeNumLabel[currentNode]=nnl[which.max(nnl)]
nodeNumLabel[currentNode, ] <- colSums(nodeNumLabel[id, , drop = FALSE])
} else {
# nodeLabel[currentNode]=nodeNumLabel[id]*nodeLabel[id]/sum(nodeNumLabel[id])
# nodeNumLabel[currentNode]=sum(nodeNumLabel[id])
nodeNumLabel[currentNode, 1] <- sum(nodeNumLabel[id, 1] * nodeNumLabel[id, 2]) / sum(nodeNumLabel[id, 2])
nodeNumLabel[currentNode, 2] <- sum(nodeNumLabel[id, 2])
}
# nodeLabel=nodeLabel[-idx]
nodeNumLabel <- nodeNumLabel[-idx, , drop = FALSE]
###################################################
nodeCutValue[currentNode] <- 0
nodeCutValue <- nodeCutValue[-idx]
if (obj$split != "mse") {
nodeLabel <- colnames(nodeNumLabel)[max.col(nodeNumLabel)] ## "random"
# nodeLabel[which(rowSums(structure$nodeNumLabel)==0),]=0
} else {
nodeLabel <- as.character(nodeNumLabel[, 1])
}
if (all(nodeCutValue == 0)) {
prediction <- rep(nodeLabel, n)
} else {
prediction <- .Call("_ODRF_predict_ODT",
PACKAGE = "ODRF", Xnew,
nodeRotaMat, nodeCutValue, childNode, nodeLabel
)$prediction
}
if (obj$split != "mse") {
err <- mean(prediction != ynew)
} else {
err <- mean((as.numeric(prediction) - ynew)^2) # /e.0
}
pruneError[ncut, ] <- c(currentNode - 1, length(nodeCutValue), max(structure$nodeDepth[-idx]), err)
if (err < err0) {
err0 <- err
structure$nodeRotaMat <- nodeRotaMat
structure$nodeCutValue <- nodeCutValue
structure$childNode <- childNode
# structure$nodeLabel=nodeLabel
structure$nodeNumLabel <- nodeNumLabel
structure$nodeDepth <- structure$nodeDepth[-idx]
structure$nodeCutIndex[currentNode] <- 0
structure$nodeCutIndex <- structure$nodeCutIndex[-idx]
}
ncut <- ncut - 1
currentNode <- cutNode[max(ncut, 1)]
}
# structure$nodeLabel=as.character(structure$nodeLabel)
# colnames(nodeRotaMat)=c("var","node","coef")
# rownames(nodeRotaMat)=rep(structure$nodeDepth,table(nodeRotaMat[,2]))
# rownames(nodeNumLabel)=structure$nodeDepth
obj$structure <- structure
pruneError <- pruneError[(ncut + 1):(length(cutNode) + 1), ]
obj$pruneError <- pruneError[order(pruneError[, 1], decreasing = TRUE), ]
# obj$tree$MaxDepth=MaxDepth
if ("projections" %in% names(obj)) {
nodeRotaMat <- obj$structure$nodeRotaMat
cutNode <- unique(nodeRotaMat[, 2][nodeRotaMat[, 1] != 0])
projections <- matrix(0, length(cutNode), obj$data$p)
for (cn in seq_along(cutNode)) {
idx <- which(nodeRotaMat[, 2] == cutNode[cn])
projections[cn, nodeRotaMat[idx, 1]] <- nodeRotaMat[idx, 3]
}
colnames(projections) <- obj$data$varName
rownames(projections) <- paste("proj", seq_len(nrow(projections)), sep = "")
obj$projections <- projections
}
obj$predicted = predictTree(obj$structure, Xnew, obj$split, obj$Levels)$prediction
class(obj) <- append(class(obj), "prune.ODT")
return(obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.