R/OHPL.RMSEP.R

Defines functions OHPL.RMSEP

Documented in OHPL.RMSEP

#' Compute RMSEP, MAE, and Q2 for a test set
#'
#' Makes predictions on new data and computes the performance evaluation
#' metrics RMSEP, MAE, and Q2.
#'
#' @param object Object of class `OHPL` fitted by [OHPL()].
#' @param newx Predictor matrix of the new data.
#' @param newy Response matrix of the new data (matrix with one column).
#'
#' @return A list of the performance metrics.
#'
#' @export OHPL.RMSEP
#'
#' @examples
#' # Generate simulation data
#' dat <- OHPL.sim(
#'   n = 100, p = 100, rho = 0.8,
#'   coef = rep(1, 10), snr = 3, p.train = 0.5,
#'   seed = 1010
#' )
#'
#' # Split training and test set
#' x <- dat$x.tr
#' y <- dat$y.tr
#' x.test <- dat$x.te
#' y.test <- dat$y.te
#'
#' # Fit the OHPL model
#' fit <- OHPL(x, y, maxcomp = 3, gamma = 0.5, G = 10, type = "max")
#'
#' # Compute evaluation metric RMSEP, Q2 and MAE for the test set
#' perf <- OHPL.RMSEP(fit, x.test, y.test)
#' perf$RMSEP
#' perf$Q2
#' perf$MAE
OHPL.RMSEP <- function(object, newx, newy) {
  # Make predictions based on the fitted OHPL model
  y.pred <- predict(
    object,
    newx = newx,
    ncomp = object$"opt.K", type = "response"
  )
  y.pred <- as.matrix(y.pred, ncol = 1L)

  # Compute RMSEP and Q2.test
  newy <- as.matrix(newy, ncol = 1L)
  residual <- y.pred - newy
  RMSEP <- sqrt(mean((residual)^2, na.rm = TRUE))
  MAE <- mean(abs(residual), na.rm = TRUE)
  Q2.test <- 1L - (sum((residual)^2, na.rm = TRUE) / sum((newy - mean(newy))^2))

  res <- list(
    "RMSEP" = RMSEP,
    "MAE" = MAE,
    "Q2.test" = Q2.test,
    "y.pred" = y.pred,
    "residual" = residual
  )

  res
}

Try the OHPL package in your browser

Any scripts or data that you put into this service are public.

OHPL documentation built on Sept. 11, 2024, 7:05 p.m.