Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----message=FALSE, warning=FALSE---------------------------------------------
library(OmicInt)
## -----------------------------------------------------------------------------
#data<-score_genes("data.csv")
#head(data)
# Symbol log2FoldChange pvalue Interactors Association_score
#1 SAR1A -2.187773 2.656521e-05 24 0.0000000
#2 C6orf62 -2.674213 1.691567e-07 0 0.0000000
#3 AXL -2.786508 1.739595e-04 2 0.3230769
#4 BICC1 -3.598553 2.738887e-04 3 0.3000000
#5 CAPZA1 -1.732784 2.321835e-04 66 0.3789474
#6 TXNIP 1.460629 7.347205e-05 30 0.3000000
# Specificity_score LFCscore
#1 0.000 -2.187773
#2 0.000 -2.674213
#3 0.590 -3.686764
#4 0.751 -4.678119
#5 0.601 -2.389418
#6 0.631 1.898818
## -----------------------------------------------------------------------------
#density_plot(data)
## -----------------------------------------------------------------------------
#feature_distribution(data)
## -----------------------------------------------------------------------------
#plot_3D_distribution(data)
## -----------------------------------------------------------------------------
#class_summary(data)
## -----------------------------------------------------------------------------
#location_summary(data)
## -----------------------------------------------------------------------------
#location_map(data)
## -----------------------------------------------------------------------------
#class_map(data)
## -----------------------------------------------------------------------------
#HK_genes(data)
## -----------------------------------------------------------------------------
#model_report<-cluster_genes(data)
## -----------------------------------------------------------------------------
#head(model_report)
## -----------------------------------------------------------------------------
#Best BIC values:
# VVI,6 VVI,7 VVI,5
#BIC -2481.986 -2483.544400 -2485.429861
#BIC diff 0.000 -1.558131 -3.443592
## -----------------------------------------------------------------------------
# Interactors LFCscore Cluster Symbol
#CAPZA1 66 -2.389418 1 CAPZA1
#RAB31 0 -2.542398 2 RAB31
#UBE2B 2 -2.061383 2 UBE2B
#YWHAG 21 -2.111448 1 YWHAG
#ENAH 29 -2.207514 1 ENAH
#PPP3CA 51 -3.500322 1 PPP3CA
## -----------------------------------------------------------------------------
# "Condition subclasses"
#
#[1] "CKD" "healthy" "hypertension"
#
#pattern_search(data, meta)
#
#
# Gene count
#down_down_down 0
#down_down_up 2679
#down_up_down 670
#down_up_up 1076
#up_down_down 5503
#up_down_up 2550
#up_up_down 2856
#up_up_up 361
## -----------------------------------------------------------------------------
#$up_up_down
# [1] "A4GALT" "AASDHPPT" "AATF"
# [4] "ABCC11" "ABCC9" "ABCG2"
# [7] "ABHD13" "ABHD2" "ABI3"
# [10] "ABI3BP" "ABITRAM" "ABO"
## -----------------------------------------------------------------------------
#cluster_heatmap(data)
## -----------------------------------------------------------------------------
#interactor_map(data)
## -----------------------------------------------------------------------------
#cpg_genes<-CpG_summary(data)
#head(cpg_genes)
## -----------------------------------------------------------------------------
# Symbol log2FoldChange pvalue Association_score
#1 SAR1A -2.187773 2.656521e-05 0.0000000
#2 C6orf62 -2.674213 1.691567e-07 0.0000000
#3 AXL -2.786508 1.739595e-04 0.3230769
#4 BICC1 -3.598553 2.738887e-04 0.3000000
#5 CAPZA1 -1.732784 2.321835e-04 0.3789474
#6 TXNIP 1.460629 7.347205e-05 0.3000000
# Specificity_score LFCscore CpG GC_content
#1 0.000 -2.187773 chr1:1211340:1214153 70.33
#2 0.000 -2.674213 NA NA
#3 0.590 -3.686764 chr1:1471765:1497848 58.83
#4 0.751 -4.678119 NA NA
#5 0.601 -2.389418 NA NA
#6 0.631 1.898818 NA NA
# Class
#1 Receptor
#2 NA
#3 Pseudogene
#4 Enzyme
#5 Enzyme
#6 Regulatory protein
## -----------------------------------------------------------------------------
#df<-miRNA_summary_validated(data)
#head(df)
## -----------------------------------------------------------------------------
#df<-miRNA_summary_predicted(data)
## -----------------------------------------------------------------------------
#df<-miRNA_network(c("PIP4K2A","MOB1A","PHACTR2","MDM2","YWHAG" ,"RAB31" ))
#head(df)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.