Description Usage Arguments Value Examples
View source: R/BenchmarkRvsCpp.R
Evaluate the likelihood calculation times for example trees and data
1 2 3 4 5 | MiniBenchmarkRvsCpp(data = PCMBaseCpp::benchmarkData, includeR = TRUE,
includeTransformationTime = TRUE, nRepsCpp = 10L,
listOptions = list(PCMBase.Lmr.mode = 11, PCMBase.Threshold.EV = 0,
PCMBase.Threshold.SV = 0), doProf = FALSE, RprofR.out = "RprofR.out",
RprofCpp.out = "RprofCpp.out")
|
data |
a 'data.frame' with at least the following columns:
Defaults: to 'benchmarkData', which is small data.table included with the PCMBaseCpp package. |
includeR |
logical (default TRUE) indicating if likelihood calculations in R should be included in the benchmark (can be slow). |
includeTransformationTime |
logical (default TRUE) indicating if the time for
|
nRepsCpp |
: number of repetitions for the cpp likelihood calculation calls: a bigger value increases the precision of time estimation at the expense of longer running time for the benchmark. Defaults to 10. |
listOptions |
options to set before measuring the calculation times. Defaults to 'list(PCMBase.Lmr.mode = 11, PCMBase.Threshold.EV = 0, PCMBase.Threshold.SV = 0)'. 'PCMBase.Lmr.mode' corresponds to the parallel traversal mode for the tree traversal algorithm (see this page for possible values). |
doProf |
logical indicating if profiling should be activated (see Rprof
from the utils R-package). Default: FALSE. Additional arguments to Rprof can
be specified by assigning lists of arguments to the options 'PCMBaseCpp.ArgsRprofR'
and 'PCMBaseCpp.ArgsRprofCpp'. The default values for both options is
|
RprofR.out, RprofCpp.out |
character strings indicating Rprof.out files for the R and Cpp implementations; ignored if doProf is FALSE. Default values: 'RprofR.out' and 'Rprofcpp.out'. |
a data.frame.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | library(PCMBase)
library(PCMBaseCpp)
library(data.table)
testData <- PCMBaseCpp::benchmarkData[1]
# original MGPM model
MiniBenchmarkRvsCpp(data = testData)
# original MGPM model and parallel mode
MiniBenchmarkRvsCpp(
data = testData,
listOptions = list(PCMBase.Lmr.mode = 21, PCMBase.Threshold.EV = 1e-9,
PCMBase.Threshold.SV = 1e-9))
# single-trait data, original MGPM model and single mode and enabled option
# PCMBase.Use1DClasses
MiniBenchmarkRvsCpp(
data = PCMBaseCpp::benchmarkData[1, list(
tree,
X = lapply(X, function(x) x[1,, drop=FALSE]),
model = lapply(model, function(m) PCMExtractDimensions(m, dims = 1)))],
listOptions = list(
PCMBase.Lmr.mode = 11,
PCMBase.Threshold.EV = 1e-9,
PCMBase.Threshold.SV = 1e-9,
PCMBase.Use1DClasses = FALSE))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.