Nothing
densityEstimation4smallNoCases=function(FeatureFull,ClassInd){
FeatureClass=FeatureFull[ClassInd]
FeatureClass = FeatureClass[!is.infinite(FeatureClass)]
D = FeatureFull[!is.infinite(FeatureFull)]
MinD = min(D, na.rm = TRUE)
MaxD = max(D, na.rm = TRUE)
if(MinD==MaxD){
warning("densityEstimation4smallNoCases: only one unique value in current data column. Please check input data")
#one unique value in data
#make sure that two kernels are given back
if(is.finite(MinD)){
if(MinD<0){
return(list("Kernels" = c(MinD,0),
"Density" = c(1,0)))
}else if(MinD>0){
return(list("Kernels" = c(0,MinD),
"Density" = c(0,1)))
}else{
return(list("Kernels" = c(MinD,1),
"Density" = c(1,0)))
}
}else{
return(list("Kernels" = c(0,1),
"Density" = c(0,0)))
}
}
optNrOfBins=DataVisualizations::OptimalNoBins(D)
optNrOfBins = min(c(100,optNrOfBins)) #
edges <- seq(MinD, MaxD, abs(MinD-MaxD)/optNrOfBins)
bin_width <- diff(edges)[1L]
bin_indices=findInterval(FeatureClass,vec = edges)
bin_counts <- tabulate(bin_indices, nbins = optNrOfBins)
Kernels=edges[-1]-diff(edges)/2
Density=bin_counts/(sum(bin_counts) * bin_width)
if(length(Kernels)==length(Density)){
return(list("Kernels" = Kernels,
"Density" = Density))
}else{
warning("densityEstimation4smallNoCases: unable to count values in current data column. Please check input data")
Kernels=c(MinD,MaxD)
return(list("Kernels" = Kernels,
"Density" = c(0,0)))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.