Nothing
# Call for DeterministicLinkage and ProbabilisticLinkage
DeterministicLinkage <- function(IDA, dataA, IDB, dataB, blocking = NULL, similarity){
blA <- vector('character')
blB <- vector('character')
vars1 <- vector('character')
vars2 <- vector('character')
res <- NULL
method <- character()
ind_c0 <- vector('logical')
ind_c1 <- vector('logical')
lenNgram <- vector('integer')
i <- 1
if (!is.null(blocking)){
blA <- dataA[,match(blocking('variable1'),colnames( dataA ))] #gets the number of the column in dataA
blB <- dataB[,match(blocking('variable2'),colnames( dataB ))]
blockingMethod_ <- blocking('method')
}
else {
blA <- NULL
blB <- NULL
blockingMethod_ <- "0"
}
# just one similarity option
if (!(inherits(similarity, "list"))){
vars1 <- c(vars1, dataA[,match(similarity('variable1'),colnames( dataA ))])
vars2 <- c(vars2, dataB[,match(similarity('variable2'),colnames( dataB ))])
method <- c(method, similarity('method'))
ind_c0 <- c(ind_c0, similarity('ind_c0'))
ind_c1 <- c(ind_c1, similarity('ind_c1'))
lenNgram <- c(lenNgram, similarity('lenNgram'))
res<-.DeterministicLinkagec(IDA_ = IDA, dataA_ = dataA[,match(similarity('variable1'),colnames( dataA ))], blockingdataA_ = blA,
IDB_ = IDB, dataB_ = dataB[,match(similarity('variable2'),colnames( dataB ))], blockingdataB_ = blB,
method_ = similarity('method'), blocking_ = blockingMethod_, threshold_ = similarity('threshold'), lenNgram_ = lenNgram,
ind_c0_= ind_c0, ind_c1_= ind_c1, counterSim = i)
res <- as.data.frame(res,stringsAsFactors = FALSE)
names(res)[3] <- paste(similarity('variable1'), "vs", similarity('variable2'), names(res)[3]) #rename columns
}
# if similarity is a list
else if (inherits(similarity, "list")){
for(l in similarity){
# # (match(similarity('variable1'),colnames( dataA ))) gets the number of the column in dataA
vars1 <-NULL
vars2 <-NULL
vars1 <- c(vars1, dataA[,match(l('variable1'),colnames( dataA ))])
vars2 <- c(vars2, dataB[,match(l('variable2'),colnames( dataB ))])
method <- c(method, l('method'))
ind_c0 <- c(ind_c0, l('ind_c0'))
ind_c1 <- c(ind_c1, l('ind_c1'))
lenNgram <- c(lenNgram, l('lenNgram'))
res<-c(res,.DeterministicLinkagec(IDA_ = IDA, dataA_ = vars1, blockingdataA_ = blA,
IDB_ = IDB, dataB_ = vars2, blockingdataB_ = blB,
method_ = method, blocking_ = blockingMethod_, threshold_ = l('threshold'), lenNgram_ = lenNgram,
ind_c0_= ind_c0, ind_c1_= ind_c1, counterSim = i))
i <- i+1
}
res <- as.data.frame(res, stringsAsFactors = FALSE)
i<-0
for(l in similarity){
names(res)[3+i] <- paste(l('variable1'), "vs" ,l('variable2'),"\n", names(res)[3+i] )
i <- i+1
}
}
return(res)
}
ProbabilisticLinkage <- function(IDA, dataA, IDB, dataB, blocking = NULL , similarity){
blA <- vector('character')
blB <- vector('character')
res <- NULL
em <- NULL
method <- character()
ind_c0 <- vector('logical')
ind_c1 <- vector('logical')
lenNgram <- vector('integer')
m <- double()
u <- double()
p <- double()
epsilon <- double()
if (!is.null(blocking)){
blA <- dataA[,match(blocking('variable1'),colnames( dataA ))] #gets the number of the column in dataA
blB <- dataB[,match(blocking('variable2'),colnames( dataB ))]
blockingMethod_ <- blocking('method')
#print(blA)
}
else {
blA <- NULL
blB <- NULL
blockingMethod_ <- "0"
}
# if similarity is a list
if (inherits(similarity, "list")){
vars1 <- NULL
vars2 <- NULL
for(l in similarity){
# (match(similarity('variable1'),colnames( dataA ))) gets the number of the column in dataA
vars1 <- c(vars1, list(dataA[,match(l('variable1'),colnames( dataA ))]))
vars2 <- c(vars2, list(dataB[,match(l('variable2'),colnames( dataB ))]))
method <- c(method, l('method') )
ind_c0 <- c(ind_c0, l('ind_c0'))
ind_c1 <- c(ind_c1, l('ind_c1'))
lenNgram <- c(lenNgram, l('lenNgram'))
m <- c(m, l('m'))
u <- c(u, l('u'))
p <- c(p, l('p'))
epsilon <- c(epsilon, l('epsilon'))
}
res<-.ProbabilisticLinkagec(IDA_ = IDA, dataA_ = vars1, blockingdataA_ = blA,
IDB_ = IDB, dataB_ = vars2, blockingdataB_ = blB,
method_ = method, blocking_ = blockingMethod_,
threshold_ = l('threshold'), lenNgram_ = lenNgram,
ind_c0_= ind_c0, ind_c1_= ind_c1,
m_ = m, u_ = u, p_ = p, e = epsilon,
upper = l('upper'), lower = l('lower'),
jaroWeightFactor = l('jaroWeightFactor'))
}
# just one similarity option
else{
method <- c(method, similarity('method') )
ind_c0 <- c(ind_c0, similarity('ind_c0'))
ind_c1 <- c(ind_c1, similarity('ind_c1'))
m <- c(m, similarity('m'))
u <- c(u, similarity('u'))
#print(as.vector(table(dataA[,match(similarity('variable1'),colnames( dataA ))])))
res<-.ProbabilisticLinkagec(IDA_ = IDA, dataA_ = dataA[,match(similarity('variable1'),colnames( dataA ))], blockingdataA_ = blA,
IDB_ = IDB, dataB_ = dataB[,match(similarity('variable2'),colnames( dataB ))], blockingdataB_ = blB,
method_ = similarity('method'), blocking_ = blockingMethod_, threshold_ = similarity('threshold'),
lenNgram_ = similarity('lenNgram'),
ind_c0_= similarity('ind_c0'), ind_c1_= similarity('ind_c1'),
m_ = similarity('m'), u_ = similarity('u'), p_ = similarity('p'), e = similarity('epsilon'),
upper = similarity('upper'), lower = similarity('lower'),
jaroWeightFactor =similarity('jaroWeightFactor'))
}
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.