Nothing
#
# This is the server logic of a Shiny web application. You can run the
# application by clicking 'Run App' above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
library(shiny)
if(Sys.getenv("LOGNAME")=="andrewhooker") devtools::load_all("~/Documents/_PROJECTS/PopED/repos/PopED/")
library(PopED)
library(rhandsontable)
function(input, output) {
parameter_data = reactive({
input_data <- input$hot_parameter_data
if (!is.null(input_data)) {
DF = hot_to_r(input_data)
} else {
DF = data.frame(bins = 30,
times = 10,
stringsAsFactors = FALSE)
}
DF
})
output$hot_parameter_data = renderRHandsontable({
DF <- parameter_data()
if(!is.null(DF)){
rhandsontable(DF,overflow="visible")
}
})
parameter_data_2 = reactive({
input_data <- input$hot_parameter_data_2
if (!is.null(input_data)) {
DF = hot_to_r(input_data)
} else {
DF = data.frame(bins = 30,
times = 10,
stringsAsFactors = FALSE)
}
DF
})
output$hot_parameter_data_2 = renderRHandsontable({
DF <- parameter_data_2()
if(!is.null(DF)){
rhandsontable(DF,overflow="visible")
}
})
output$distPlot <- renderPlot({
# generate bins based on input$bins from ui.R
x <- faithful[, 2]
# bins <- seq(min(x), max(x), length.out = input$bins + 1)
bins <- seq(min(x), max(x), length.out = parameter_data_2()$bins[1] + 1)
# draw the histogram with the specified number of bins
hist(x, breaks = bins, col = 'darkgray', border = 'white')
})
create_db <- reactive({
model_def <- list(
ff_fun="ff.PK.1.comp.oral.sd.CL",
fg_fun=build_sfg(model="ff.PK.1.comp.oral.sd.CL"),
fError_fun="feps.add.prop")
par_def <- list(
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(0.01,0.25))
# bpop = bpop,
# notfixed_bpop=notfixed_bpop,
# d=d_vec,
# notfixed_d = notfixed_d,
# covd = covd,
# notfixed_covd=notfixed_covd,
# sigma = sigma_mat,
# notfixed_sigma = notfixed_sigma)
design_def <- list(groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0,
maxxt=120,
a=70,
mina=0,
maxa=100)
do.call(create.poped.database,
c(model_def,
par_def,
design_def)
)
})
pmp_plot <- eventReactive(input$update_pmp, {
poped_db <- create_db()
plot <- plot_model_prediction(poped_db,
PI= input$PI,
IPRED= input$IPRED,
DV= input$DV,
separate.groups= input$separate.groups,
model_num_points = input$model_num_points)
})
output$modelPlot <- renderPlot({
print(pmp_plot())
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.