Nothing
#' @title Estimate the mean-optimal treatment regime for data with independently censored response
#' @description This function estimates the Mean-optimal Treatment Regime
#' with censored response.
#' The implemented function only works for scenarios in which
#' treatment is binary and the censoring time
#' is independent of baseline covariates, treatment group and all potential survival times.
#'
#' @param data a data.frame, containing variables in the \code{moPropen} and
#' \code{RegimeClass} and also the response variables, namely \code{censor_y} as the censored response,
#' and \code{delta} as the censoring indicator.
#'
#' @param regimeClass a formula specifying the class of treatment regimes to search,
#' e.g. if \code{regimeClass = a~x1+x2}, and then this function will
#' search the class of treatment regimes
#' of the form
#' \deqn{d(x) = I \left(\beta_0 +\beta_1 x_1 + \beta_2 x_2 > 0\right).
#' }{d(x)=I(\beta_0 +\beta_1 * x1 + \beta_2 * x2 > 0).}
#' Polynomial arguments are also supported.
#'
#'
#' @param moPropen The propensity score model for the probability of receiving
#' treatment level 1.
#' When \code{moPropen} equals the string "BinaryRandom", the proportion of observations
#' receiving treatment level 1 in the sample will be plugged in as an estimate
#' of the propensity.
#' Otherwise, this argument should be a formula/string, based on which this function
#' will fit a logistic regression on the treatment level. e.g. \code{a1~x1}.
#'
#'
#' @param cluster default is FALSE, meaning do not use parallel computing for the genetic algorithm(GA).
#'
#' @param p_level choose between 0,1,2,3 to indicate different levels of output
#' from the genetic function. Specifically, 0 (minimal printing),
#' 1 (normal), 2 (detailed), and 3 (debug).
#'
#' @param s.tol tolerance level for the GA algorithm. This is input for parameter \code{solution.tolerance}
#' in function \code{rgenoud::genoud}.
#'
#' @param it.num the maximum GA iteration number
#'
#' @param pop.size an integer with the default set to be 3000. This is roughly the
#' number individuals for the first generation
#' in the genetic algorithm (\code{rgenoud::genoud}).
#'
#' @param Domains default is NULL. Otherwise, the object should be a \code{nvars *2}
#' matrix used as the space of parameters, which will be supplied to \code{rgenoud::genoud}.
#' \code{nvars} is the total number of parameters.
#'
#'
#'
#'
#' @return This function returns an object with 6 objects:
#' \itemize{
#' \item{\code{coefficients}}{ the estimated parameter indexing the mean-optimal treatment regime.
#' Since we focus the space of linear treatment regimes, the estimated decision rule
#' cannot be uniquely identified without scale normalized. In this package,
#' we normalized by \eqn{|\beta_1| = 1}, which was proposed in Horowitz \insertCite{horowitz1992smoothed}{QTOCen}. }
#' \item{\code{hatQ}} { the estimated optimal marginal mean response}
#' \item{\code{moPropen}}{ log of the input argument of \code{moPropen}}
#' \item{\code{regimeClass}}{ log of the input argument of \code{regimeClass}}
#' \item{\code{data_aug}}{ Training data with additional columns used in the algorithm. Note that \code{data_aug} is used for plotting
#' of survival function of the censoring time}
#' \item{\code{survfitCensorTime}}{ the estimated survival function of the censoring time}
#' }
#'
#'
#'
#' @importFrom rgenoud genoud
#' @importFrom survival survfit
#' @importFrom methods is
#' @import grDevices
#' @export
#' @examples
#' GenerateData <- function(n)
#' {
#' x1 <- runif(n, min=-0.5,max=0.5)
#' x2 <- runif(n, min=-0.5,max=0.5)
#' error <- rnorm(n, sd= 1)
#' ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
#' a <- rbinom(n = n, size = 1, prob=ph)
#' c <- 1.5 + + runif(n = n, min=0, max=2)
#' cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
#' censor_y <- pmin(cmplt_y, c)
#' delta <- as.numeric(c > cmplt_y)
#' return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))
#' }
#' n <- 400
#'
#' D <- GenerateData(n)
#' fit1 <- IPWE_mean_IndCen(data = D, regimeClass = a~x1+x2)
#'
#'
#' @references
#' \insertRef{zhou2018quantile}{QTOCen}
#'
#' \insertRef{horowitz1992smoothed}{QTOCen}
#'
IPWE_mean_IndCen <- function(data, regimeClass,
moPropen = "BinaryRandom",
Domains = NULL,
cluster = FALSE, p_level = 1, s.tol = 1e-04, it.num = 8,
pop.size = 3000) {
# tau is between 0 and 1 regimeClass should be like
# 'txname ~ x1+x2', etc.
if (!(exists("data") && is.data.frame(data)))
stop("Error: data has to be a data frame")
if (!("censor_y" %in% names(data)))
stop("The response variable 'censor_y' is not found in the input data.")
if (!("delta" %in% names(data)))
stop("The censoring indicator variable 'delta' is not found.")
numNAy <- sum(is.na(data$censor_y))
if (numNAy > 0) {
yNA.idx <- which(is.na(data$y))
data <- data[!is.na(data$censor_y), ]
message(paste("(", numNAy, "observations are removed since outcome is missing)"))
}
n <- nrow(data)
regimeClass <- as.formula(regimeClass)
txname <- as.character(regimeClass[[2]])
txVec <- try(data[, txname], silent = TRUE)
if (is(txVec, "try-error")) {
stop("Variable '", paste0(txname, "' not found in 'data'."))
}
if(!all(unique(txVec) %in% c(0,1)))
stop("The levels of treatment must be numeric, being either 0 or 1.")
# Propensity score
if (moPropen == "BinaryRandom") {
data$ph <- rep(mean(data$a), n)
} else {
moPropen <- as.formula(moPropen)
logistic.model.tx <- glm(moPropen, data = data, family = binomial)
data$ph <- as.vector(logistic.model.tx$fit)
}
# KM estimates of distribution of the censoring variable, which should be random, i.e.
# independent of A,X
# Notice that the censoring variable is missing if delta ==1.
data$deltaC <- 1 - data$delta
survfit_all <- survfit(Surv(censor_y, event = deltaC)~1, data=data)
survest <- stepfun(survfit_all$time, c(1, survfit_all$surv))
#predict Pr(C>Y_censor), to get data$ghat.
data$ghat <- survest(data$censor_y)
# add either the true censoring probability G, or an estimation
fit_mean <- Gene_Mean_CenIPWE(data_aug = data, ph = data$ph,
Domains = Domains,
regimeClass = regimeClass, cluster = cluster,
pop.size = pop.size, p_level = p_level, s.tol = s.tol,
it.num = it.num)
fit <- NULL
fit$coefficients <- fit_mean$coefficients
names(fit$coefficients) <- colnames(model.matrix(regimeClass, data))
fit$hatQ <- fit_mean$hatQ
fit$moPropen <- moPropen
fit$regimeClass <- regimeClass
fit$data_aug <- data
fit$survfitCensorTime <- survfit_all
class(fit) <- c("Censored", "mean_TR")
return(fit)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.