Nothing
############################################################################
# MLwiN MCMC Manual
#
# 22 Using the Structured MVN framework for models . . . . . . . . . . .341
#
# Browne, W.J. (2009) MCMC Estimation in MLwiN, v2.13. Centre for
# Multilevel Modelling, University of Bristol.
############################################################################
# R script to replicate all analyses using R2MLwiN
#
# Zhang, Z., Charlton, C., Parker, R, Leckie, G., and Browne, W.J.
# Centre for Multilevel Modelling, 2012
# http://www.bristol.ac.uk/cmm/software/R2MLwiN/
############################################################################
# 22.1 MCMC theory for Structured MVN models . . . . . . . . . . . . . . 341
# 22.2 Using the SMVN framework in practice . . . . . . . . . . . . . . .344
library(R2MLwiN)
# MLwiN folder
mlwin <- getOption("MLwiN_path")
while (!file.access(mlwin, mode = 1) == 0) {
cat("Please specify the root MLwiN folder or the full path to the MLwiN executable:\n")
mlwin <- scan(what = character(0), sep = "\n")
mlwin <- gsub("\\", "/", mlwin, fixed = TRUE)
}
options(MLwiN_path = mlwin)
# User's input if necessary
## Read tutorial data
data(tutorial, package = "R2MLwiN")
## Define the model
(mymodel <- runMLwiN(normexam ~ 1 + (1 | school) + (1 | student), estoptions = list(EstM = 1), data = tutorial))
## Structured MVN
(mymodel <- runMLwiN(normexam ~ 1 + (1 | school) + (1 | student), estoptions = list(EstM = 1, mcmcOptions = list(smvn = 1)),
data = tutorial))
# 22.3 Model Comparison and structured MVN models . . . . . . . . . . . .349
## Define the model
## Gibbs
(mymodel <- runMLwiN(normexam ~ 1 + standlrt + (1 | school) + (1 | student), estoptions = list(EstM = 1), data = tutorial))
## SMCMC
(mymodel <- runMLwiN(normexam ~ 1 + standlrt + (1 | school) + (1 | student), estoptions = list(EstM = 1, mcmcOptions = list(smcm = 1)),
data = tutorial))
## Structured MVN
(mymodel <- runMLwiN(normexam ~ 1 + standlrt + (1 | school) + (1 | student), estoptions = list(EstM = 1, mcmcOptions = list(smvn = 1)),
data = tutorial))
# 22.4 Assessing the need for the level 2 variance . . . . . . . . . . . 350
sixway(mymodel@chains[, "RP2_var_Intercept", drop = FALSE], "sigma2u0")
set.seed(1)
tutorial$temp <- rnorm(4059)
## Define the model
## IGLS
(mymodel <- runMLwiN(temp ~ 1 + standlrt + (1 | school) + (1 | student), data = tutorial))
## Gibbs
(mymodel <- runMLwiN(temp ~ 1 + standlrt + (1 | school) + (1 | student), estoptions = list(EstM = 1), data = tutorial))
## Structured MVN
(mymodel <- runMLwiN(temp ~ 1 + standlrt + (1 | school) + (1 | student), estoptions = list(EstM = 1, mcmcOptions = list(smvn = 1)),
data = tutorial))
summary(mymodel@chains[, "RP2_var_Intercept"])
sixway(mymodel@chains[, "RP2_var_Intercept", drop = FALSE], "sigma2u0")
# Chapter learning outcomes . . . . . . . . . . . . . . . . . . . . . . .355
############################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.