Nothing
"bugs.sims" <-
function (parameters.to.save, n.chains, n.iter, n.burnin, n.thin, DIC=TRUE)
{
## Read the simulations from Bugs into R, format them, and monitor convergence
sims.files <- paste ("coda", 1:n.chains, ".txt", sep="")
## read in the names of the parameters and the indices of their samples
index <- read.table("codaIndex.txt", header = FALSE, sep = "\t")
## in Splus, read.table interprets the first row of the file as row names,
## while in R it does not
if(is.R()) {
parameter.names <- as.vector(index[, 1])
n.keep <- index[1, 3] - index[1, 2] + 1
}
else {
parameter.names <- row.names(index)
n.keep <- index[1, 2] - index[1, 1] + 1
}
n.parameters <- length(parameter.names)
n.sims <- n.keep*n.chains
sims <- matrix( , n.sims, n.parameters)
sims.array <- array (NA, c(n.keep, n.chains, n.parameters))
root.long <- character(n.parameters)
indexes.long <- vector(n.parameters, mode = "list")
for (i in 1:n.parameters){
temp <- decode.parameter.name(parameter.names[i])
root.long[i] <- temp$root
indexes.long[[i]] <- temp$indexes
}
n.roots <- length(parameters.to.save)
left.bracket.short <- as.vector (regexpr("[[]", parameters.to.save))
right.bracket.short <- as.vector (regexpr("[]]", parameters.to.save))
root.short <- ifelse (left.bracket.short==-1, parameters.to.save,
substring (parameters.to.save, 1, left.bracket.short-1))
dimension.short <- rep(0, n.roots)
indexes.short <- vector(n.roots, mode = "list")
n.indexes.short <- vector(n.roots, mode = "list")
long.short <- vector(n.roots, mode = "list")
length.short <- numeric(n.roots)
##SS, UL##: Let's optimize the following loops ...
for (j in 1:n.roots) {
long.short[[j]] <- (1:n.parameters)[root.long==root.short[j]]
length.short[j] <- length(long.short[[j]])
if (length.short[j]==0)
stop(paste ("parameter", root.short[[j]], "is not in the model"))
else if (length.short[j]>1) {
dimension.short[j] <- length(indexes.long[[long.short[[j]][1]]])
n.indexes.short[[j]] <- numeric(dimension.short[j])
for (k in 1:dimension.short[j]) n.indexes.short[[j]][k] <- length (
unique (unlist (lapply (indexes.long[long.short[[j]]], .subset, k))))
length.short[j] <- prod(n.indexes.short[[j]])
indexes.short[[j]] <- as.list(numeric(length.short[j]))
for (k in 1:length.short[j])
indexes.short[[j]][[k]] <- indexes.long[[long.short[[j]][k]]]
}
}
# rank.long <- rank(paste(rep(root.short,length.short),
# (1:n.parameters)/10^ceiling(log10(n.parameters)),sep="."))
rank.long <- unlist(long.short)
for (i in 1:n.chains){
if(is.R()) {
sims.i <- scan(sims.files[i], quiet = TRUE)[2 * (1:(n.keep * n.parameters))]
} else {
sims.i <- scan(sims.files[i])[2 * (1:(n.keep * n.parameters))]
}
sims[(n.keep*(i-1)+1):(n.keep*i), ] <- sims.i
sims.array[,i,] <- sims.i
}
dimnames (sims) <- list (NULL, parameter.names)
dimnames (sims.array) <- list (NULL, NULL, parameter.names)
#
# Perform convergence checks and compute medians and quantiles.
#
summary <- monitor (sims.array, n.chains, keep.all=TRUE)
#
# Create outputs
#
last.values <- as.list (numeric(n.chains))
for (i in 1:n.chains){
n.roots.0 <- if(DIC) n.roots-1 else n.roots
last.values[[i]] <- as.list (numeric(n.roots.0))
names(last.values[[i]]) <- root.short[1:n.roots.0]
for (j in 1:n.roots.0){
if (dimension.short[j]<=1){
last.values[[i]][[j]] <- sims.array[n.keep,i,long.short[[j]]]
names(last.values[[i]][[j]]) <- NULL
}
else
last.values[[i]][[j]] <- aperm (array(sims.array[n.keep,i,long.short[[j]]],
rev(n.indexes.short[[j]])), dimension.short[j]:1)
}
}
sims <- sims [sample(n.sims), , drop = FALSE] # scramble (for convenience in analysis)
sims.list <- summary.mean <- summary.sd <- summary.median <- vector(n.roots, mode = "list")
names(sims.list) <- names(summary.mean) <- names(summary.sd) <- names(summary.median) <- root.short
for (j in 1:n.roots){
if (length.short[j]==1){
sims.list[[j]] <- sims[,long.short[[j]]]
summary.mean[[j]] <- summary[long.short[[j]],"mean"]
summary.sd[[j]] <- summary[long.short[[j]],"sd"]
summary.median[[j]] <- summary[long.short[[j]],"50%"]
}
else{
temp2 <- dimension.short[j]:1
sims.list[[j]] <- aperm (array (sims[,long.short[[j]]],
c(n.sims,rev(n.indexes.short[[j]]))), c(1,(dimension.short[j]+1):2))
summary.mean[[j]] <- aperm (array (summary[long.short[[j]],"mean"],
rev(n.indexes.short[[j]])), temp2)
summary.sd[[j]] <- aperm (array (summary[long.short[[j]],"sd"],
rev(n.indexes.short[[j]])), temp2)
summary.median[[j]] <- aperm (array (summary[long.short[[j]],"50%"],
rev(n.indexes.short[[j]])), temp2)
}
}
summary <- summary[rank.long,]
all <- list (n.chains=n.chains, n.iter=n.iter, n.burnin=n.burnin,
n.thin=n.thin, n.keep=n.keep, n.sims=n.sims,
sims.array=sims.array[,,rank.long,drop=FALSE], sims.list=sims.list,
sims.matrix=sims[,rank.long], summary=summary, mean=summary.mean,
sd=summary.sd, median=summary.median, root.short=root.short,
long.short=long.short, dimension.short=dimension.short,
indexes.short=indexes.short, last.values=last.values)
if(DIC) {
## Read DIC from BUGS log
LOG <- bugs.log("log.txt")$DIC
if(any(is.na(LOG))) { ## Something went wrong --> Use Gelman's tweak
deviance <- all$sims.array[, , dim(sims.array)[3], drop = FALSE]
if(!is.R()) dimnames(deviance) <- NULL
dim(deviance) <- dim(deviance)[1:2]
pD <- numeric(n.chains)
DIC <- numeric(n.chains)
for (i in 1:n.chains) {
pD[i] <- var(deviance[, i])/2
DIC[i] <- mean(deviance[, i]) + pD[i]
}
all <- c(all, list(isDIC=TRUE, DICbyR=TRUE,
pD=mean(pD), DIC=mean(DIC)))
} else { ## Use BUGS calculation of DIC
all <- c(all, list(isDIC=TRUE, DICbyR=FALSE,
pD=LOG[nrow(LOG),3], DIC=LOG[nrow(LOG),4]))
}
} else {
all <- c(all, isDIC=FALSE)
}
all
}
if(!is.R()) .subset <- function(x, index) x[index]
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.