preddist | R Documentation |
Predictive distribution for mixture of conjugate distributions (beta, normal, gamma).
preddist(mix, ...)
## S3 method for class 'betaMix'
preddist(mix, n = 1, ...)
## S3 method for class 'normMix'
preddist(mix, n = 1, sigma, ...)
## S3 method for class 'gammaMix'
preddist(mix, n = 1, ...)
## S3 method for class 'mvnormMix'
preddist(mix, ...)
mix |
mixture distribution |
... |
includes arguments which depend on the specific prior-likelihood pair, see description below. |
n |
predictive sample size, set by default to 1 |
sigma |
The fixed reference scale of a normal mixture. If left unspecified, the default reference scale of the mixture is assumed. |
Given a mixture density (either a posterior or a prior)
p(\theta,\mathbf{w},\mathbf{a},\mathbf{b})
and a data likelihood of
y|\theta \sim f(y|\theta),
the predictive distribution of a one-dimensional summary y_n
of $n$ future observations is distributed as
y_n \sim \int p(\theta,\mathbf{w},\mathbf{a},\mathbf{b}) \, f(y_n|\theta) \, d\theta .
This distribution is the marginal distribution of the data under
the mixture density. For binary and Poisson data y_n =
\sum_{i=1}^n y_i
is the sum over future events. For normal data,
it is the mean\bar{y}_n = 1/n \sum_{i=1}^n y_i
.
The function returns for a normal, beta or gamma mixture
the matching predictive distribution for y_n
.
preddist(betaMix)
: Obtain the matching predictive distribution
for a beta distribution, the BetaBinomial.
preddist(normMix)
: Obtain the matching predictive distribution
for a Normal with constant standard deviation. Note that the
reference scale of the returned Normal mixture is meaningless
as the individual components are updated appropriatley.
preddist(gammaMix)
: Obtain the matching predictive distribution
for a Gamma. Only Poisson likelihoods are supported.
preddist(mvnormMix)
: Multivariate normal mixtures predictive
densities are not (yet) supported.
Prior/Posterior | Likelihood | Predictive | Summaries |
Beta | Binomial | Beta-Binomial | n , r |
Normal | Normal (fixed \sigma ) | Normal | n , m , se |
Gamma | Poisson | Gamma-Poisson | n , m |
Gamma | Exponential | Gamma-Exp (not supported) | n , m
|
# Example 1: predictive distribution from uniform prior.
bm <- mixbeta(c(1,1,1))
bmPred <- preddist(bm, n=10)
# predictive proabilities and cumulative predictive probabilities
x <- 0:10
d <- dmix(bmPred, x)
names(d) <- x
barplot(d)
cd <- pmix(bmPred, x)
names(cd) <- x
barplot(cd)
# median
mdn <- qmix(bmPred,0.5)
mdn
# Example 2: 2-comp Beta mixture
bm <- mixbeta( inf=c(0.8,15,50),rob=c(0.2,1,1))
plot(bm)
bmPred <- preddist(bm,n=10)
plot(bmPred)
mdn <- qmix(bmPred,0.5)
mdn
d <- dmix(bmPred,x=0:10)
n.sim <- 100000
r <- rmix(bmPred,n.sim)
d
table(r)/n.sim
# Example 3: 3-comp Normal mixture
m3 <- mixnorm( c(0.50,-0.2,0.1),c(0.25,0,0.2), c(0.25,0,0.5), sigma=10)
print(m3)
summary(m3)
plot(m3)
predm3 <- preddist(m3,n=2)
plot(predm3)
print(predm3)
summary(predm3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.