Description Usage Arguments Details Value Author(s) References See Also Examples
This function provides the analysis of absolute and conditional regional economic beta convergence for cross-sectional data using a nonlineaer least squares (NLS) technique.
1 2 3 4 5 6 7 | betaconv.nls(gdp1, time1, gdp2, time2, conditions = NULL, conditions.formula = NULL,
conditions.startval = NULL, beta.plot = FALSE, beta.plotPSize = 1,
beta.plotPCol = "black", beta.plotLine = FALSE, beta.plotLineCol = "red",
beta.plotX = "Ln (initial)", beta.plotY = "Ln (growth)",
beta.plotTitle = "Beta convergence", beta.bgCol = "gray95", beta.bgrid = TRUE,
beta.bgridCol = "white", beta.bgridSize = 2, beta.bgridType = "solid",
print.results = TRUE)
|
gdp1 |
A numeric vector containing the GDP per capita (or another economic variable) at time t |
time1 |
A single value of time t (= the initial year) |
gdp2 |
A numeric vector containing the GDP per capita (or another economic variable) at time t+1 or a data frame containing the GDPs per capita (or another economic variable) at time t+1, t+2, t+3, ..., t+n |
time2 |
A single value of time t+1 or t_n, respectively |
conditions |
A data frame containing the conditions for conditional beta convergence |
conditions.formula |
A formula for the functional linkage of the conditions in the case of conditional beta convergence |
conditions.startval |
Starting values for the parameters of the conditions in the case of conditional beta convergence |
beta.plot |
Boolean argument that indicates if a plot of beta convergence has to be created |
beta.plotPSize |
If |
beta.plotPCol |
If |
beta.plotLine |
If |
beta.plotLineCol |
If |
beta.plotX |
If |
beta.plotY |
If |
beta.plotTitle |
If |
beta.bgCol |
If |
beta.bgrid |
If |
beta.bgridCol |
If |
beta.bgridSize |
If |
beta.bgridType |
If |
print.results |
Logical argument that indicates if the function shows the results or not |
From the regional economic perspective (in particular the neoclassical growth theory), regional disparities are expected to decline. This convergence can have different meanings: Sigma convergence (σ) means a harmonization of regional economic output or income over time, while beta convergence (β) means a decline of dispersion because poor regions have a stronger economic growth than rich regions (Capello/Nijkamp 2009). Regardless of the theoretical assumptions of a harmonization in reality, the related analytical framework allows to analyze both types of convergence for cross-sectional data (GDP p.c. or another economic variable, y, for i regions and two points in time, t and t+T), or one starting point (t) and the average growth within the following n years (t+1, t+2, ..., t+n), respectively. Beta convergence can be calculated either in a linearized OLS regression model or in a nonlinear regression model. When no other variables are integrated in this model, it is called absolute beta convergence. Implementing other region-related variables (conditions) into the model leads to conditional beta convergence. If there is beta convergence (β < 0), it is possible to calculate the speed of convergence, λ, and the so-called Half-Life H, while the latter is the time taken to reduce the disparities by one half (Allington/McCombie 2007, Goecke/Huether 2016). There is sigma convergence, when the dispersion of the variable (σ), e.g. calculated as standard deviation or coefficient of variation, reduces from t to t+T. This can be measured using ANOVA for two years or trend regression with respect to several years (Furceri 2005, Goecke/Huether 2016).
This function calculates absolute and/or conditional beta convergence using a nonlinear least squares approach for estimation. It needs at least two vectors (GDP p.c. or another economic variable, y, for i regions) and the related two points in time (t and t+T). If the beta coefficient is negative (using OLS) or positive (using NLS), there is beta convergence.
A list
containing the following objects:
regdata |
A data frame containing the regression data, including the ln-transformed economic variables |
abeta |
A list containing the estimates of the absolute beta convergence regression model, including lambda and half-life |
cbeta |
If conditions are stated: a list containing the estimates of the conditional beta convergence regression model, including lambda and half-life |
Thomas Wieland
Allington, N. F. B./McCombie, J. S. L. (2007): “Economic growth and beta-convergence in the East European Transition Economies”. In: Arestis, P./Baddely, M./McCombie, J. S. L. (eds.): Economic Growth. New Directions in Theory and Policy. Cheltenham: Elgar. p. 200-222.
Capello, R./Nijkamp, P. (2009): “Introduction: regional growth and development theories in the twenty-first century - recent theoretical advances and future challenges”. In: Capello, R./Nijkamp, P. (eds.): Handbook of Regional Growth and Development Theories. Cheltenham: Elgar. p. 1-16.
Dapena, A. D./Vazquez, E. F./Morollon, F. R. (2016): “The role of spatial scale in regional convergence: the effect of MAUP in the estimation of beta-convergence equations”. In: The Annals of Regional Science, 56, 2, p. 473-489.
Furceri, D. (2005): “Beta and sigma-convergence: A mathematical relation of causality”. In: Economics Letters, 89, 2, p. 212-215.
Goecke, H./Huether, M. (2016): “Regional Convergence in Europe”. In: Intereconomics, 51, 3, p. 165-171.
Young, A. T./Higgins, M. J./Levy, D. (2008): “Sigma Convergence versus Beta Convergence: Evidence from U.S. County-Level Data”. In: Journal of Money, Credit and Banking, 40, 5, p. 1083-1093.
rca
, betaconv.ols
, betaconv.speed
, sigmaconv
, sigmaconv.t
, cv
, sd2
, var2
1 2 3 4 5 | data (G.counties.gdp)
# Loading GDP data for Germany (counties = Landkreise)
betaconv.nls (G.counties.gdp$gdppc2010, 2010, G.counties.gdp$gdppc2011, 2011,
conditions = NULL, print.results = TRUE)
# Two years, no conditions (Absolute beta convergence)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.