Description Usage Arguments Details Value Author(s) References See Also Examples
Calculating the Gini coefficient of spatial industry concentration based on regional industry data (normally employment data)
1 2 3 4 5 6 7 | gini.conc(e_ij, e_j, lc = FALSE, lcx = "% of objects",
lcy = "% of regarded variable", lctitle = "Lorenz curve",
le.col = "blue", lc.col = "black", lsize = 1, ltype = "solid",
bg.col = "gray95", bgrid = TRUE, bgrid.col = "white",
bgrid.size = 2, bgrid.type = "solid", lcg = FALSE, lcgn = FALSE,
lcg.caption = NULL, lcg.lab.x = 0, lcg.lab.y = 1,
add.lc = FALSE, plot.lc = TRUE)
|
e_ij |
a numeric vector with the employment of the industry i in region j |
e_j |
a numeric vector with the employment in region j |
lc |
logical argument that indicates if the Lorenz curve is plotted additionally (default: |
lcx |
if |
lcy |
if |
lctitle |
if |
le.col |
if |
lc.col |
if |
lsize |
if |
ltype |
if |
bg.col |
if |
bgrid |
if |
bgrid.col |
if |
bgrid.size |
if |
bgrid.type |
if |
lcg |
if |
lcgn |
if |
lcg.caption |
if |
lcg.lab.x |
if |
lcg.lab.y |
if |
add.lc |
if |
plot.lc |
logical argument that indicates if the Lorenz curve itself is plotted (if |
The Gini coefficient of spatial industry concentration (G_{i}) is a special spatial modification of the Gini coefficient of inequality (see the function gini()
). It represents the rate of spatial concentration of the industry i referring to j regions (e.g. cities, counties, states). The coefficient G_{i} varies between 0 (perfect distribution, respectively no concentration) and 1 (complete concentration in one region). Optionally a Lorenz curve is plotted (if lc = TRUE
).
A single numeric value (0 < G_{i} < 1)
Thomas Wieland
Farhauer, O./Kroell, A. (2013): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.
Nakamura, R./Morrison Paul, C. J. (2009): “Measuring agglomeration”. In: Capello, R./Nijkamp, P. (eds.): Handbook of Regional Growth and Development Theories. Cheltenham: Elgar. p. 305-328.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | # Example from Farhauer/Kroell (2013):
E_ij <- c(500,500,1000,7000,1000)
# employment of the industry in five regions
E_j <- c(20000,15000,20000,40000,5000)
# employment in the five regions
gini.conc (E_ij, E_j)
# Returns the Gini coefficient of industry concentration (0.4068966)
data(G.regions.emp)
# Concentration of construction industry in Germany
# based on 16 German regions (Bundeslaender) for the year 2008
construction2008 <- G.regions.emp[(G.regions.emp$industry == "Baugewerbe (F)" |
G.regions.emp$industry == "Insgesamt") & G.regions.emp$year == "2008",]
# only data for construction industry (Baugewerbe) and all-over (Insgesamt)
# for the 16 German regions in the year 2008
construction2008 <- construction2008[construction2008$region != "Insgesamt",]
# delete all-over data for all industries
gini.conc(construction2008[construction2008$industry=="Baugewerbe (F)",]$emp,
construction2008[construction2008$industry=="Insgesamt",]$emp)
# Concentration of financial industry in Germany 2008 vs. 2014
# based on 16 German regions (Bundeslaender) for 2008 and 2014
finance2008 <- G.regions.emp[(G.regions.emp$industry ==
"Erbringung von Finanz- und Vers.leistungen (K)" |
G.regions.emp$industry == "Insgesamt") & G.regions.emp$year == "2008",]
finance2008 <- finance2008[finance2008$region != "Insgesamt",]
# delete all-over data for all industries
gini.conc(finance2008[finance2008$industry ==
"Erbringung von Finanz- und Vers.leistungen (K)",]$emp,
finance2008[finance2008$industry=="Insgesamt",]$emp)
finance2014 <- G.regions.emp[(G.regions.emp$industry ==
"Erbringung von Finanz- und Vers.leistungen (K)" | G.regions.emp$industry ==
"Insgesamt") & G.regions.emp$year == "2014",]
finance2014 <- finance2014[finance2014$region != "Insgesamt",]
# delete all-over data for all industries
gini.conc(finance2014[finance2014$industry ==
"Erbringung von Finanz- und Vers.leistungen (K)",]$emp,
finance2014[finance2014$industry=="Insgesamt",]$emp)
|
[1] 0.4068966
[1] 0.1355832
[1] 0.2171468
[1] 0.2228562
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.