gini.spec: Gini coefficient of regional specialization

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

Calculating the Gini coefficient of regional specialization based on regional industry data (normally employment data)

Usage

1
2
3
4
5
6
7
gini.spec(e_ij, e_i, lc = FALSE, lcx = "% of objects", 
lcy = "% of regarded variable", lctitle = "Lorenz curve", 
le.col = "blue", lc.col = "black", lsize = 1, ltype = "solid",
bg.col = "gray95", bgrid = TRUE, bgrid.col = "white", 
bgrid.size = 2, bgrid.type = "solid", lcg = FALSE, lcgn = FALSE, 
lcg.caption = NULL, lcg.lab.x = 0, lcg.lab.y = 1, 
add.lc = FALSE, plot.lc = TRUE)

Arguments

e_ij

a numeric vector with the employment of the industries i in region j

e_i

a numeric vector with the employment in the industries i

lc

logical argument that indicates if the Lorenz curve is plotted additionally (default: lc = FALSE, so no Lorenz curve is displayed)

lcx

if lc = TRUE (plot of Lorenz curve), lcx defines the x axis label

lcy

if lc = TRUE (plot of Lorenz curve), lcy defines the y axis label

lctitle

if lc = TRUE (plot of Lorenz curve), lctitle defines the overall title of the Lorenz curve plot

le.col

if lc = TRUE (plot of Lorenz curve), le.col defines the color of the diagonale (line of equality)

lc.col

if lc = TRUE (plot of Lorenz curve), lc.col defines the color of the Lorenz curve

lsize

if lc = TRUE (plot of Lorenz curve), lsize defines the size of the lines (default: 1)

ltype

if lc = TRUE (plot of Lorenz curve), ltype defines the type of the lines (default: "solid")

bg.col

if lc = TRUE (plot of Lorenz curve), bg.col defines the background color of the plot (default: "gray95")

bgrid

if lc = TRUE (plot of Lorenz curve), the logical argument bgrid defines if a grid is shown in the plot

bgrid.col

if lc = TRUE (plot of Lorenz curve) and bgrid = TRUE (background grid), bgrid.col defines the color of the background grid (default: "white")

bgrid.size

if lc = TRUE (plot of Lorenz curve) and bgrid = TRUE (background grid), bgrid.size defines the size of the background grid (default: 2)

bgrid.type

if lc = TRUE (plot of Lorenz curve) and bgrid = TRUE (background grid), bgrid.type defines the type of lines of the background grid (default: "solid")

lcg

if lc = TRUE (plot of Lorenz curve), the logical argument lcg defines if the non-standardized Gini coefficient is displayed in the Lorenz curve plot

lcgn

if lc = TRUE (plot of Lorenz curve), the logical argument lcgn defines if the standardized Gini coefficient is displayed in the Lorenz curve plot

lcg.caption

if lcg = TRUE (displaying the Gini coefficient in the plot), lcg.caption specifies the caption above the coefficients

lcg.lab.x

if lcg = TRUE (displaying the Gini coefficient in the plot), lcg.lab.x specifies the x coordinate of the label

lcg.lab.y

if lcg = TRUE (displaying the Gini coefficient in the plot), lcg.lab.y specifies the y coordinate of the label

add.lc

if lc = TRUE (plot of Lorenz curve), add.lc specifies if a new Lorenz curve is plotted (add.lc = "FALSE") or the plot is added to an existing Lorenz curve plot (add.lc = "TRUE")

plot.lc

logical argument that indicates if the Lorenz curve itself is plotted (if plot.lc = FALSE, only the line of equality is plotted))

Details

The Gini coefficient of regional specialization (G_{j}) is a special spatial modification of the Gini coefficient of inequality (see the function gini()). It represents the degree of regional specialization of the region j referring to i industries. The coefficient G_{j} varies between 0 (no specialization) and 1 (complete specialization). Optionally a Lorenz curve is plotted (if lc = TRUE).

Value

A single numeric value (0 < G_{j} < 1)

Author(s)

Thomas Wieland

References

Farhauer, O./Kroell, A. (2013): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.

Nakamura, R./Morrison Paul, C. J. (2009): “Measuring agglomeration”. In: Capello, R./Nijkamp, P. (eds.): Handbook of Regional Growth and Development Theories. Cheltenham: Elgar. p. 305-328.

See Also

gini, gini.conc

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Example from Farhauer/Kroell (2013):
E_ij <- c(700,600,500,10000,40000)
# employment of five industries in the region
E_i <- c(30000,15000,10000,60000,50000)
# over-all employment in the five industries
gini.spec (E_ij, E_i)
# Returns the Gini coefficient of regional specialization (0.6222222)

# Example Freiburg
data(Freiburg)
# Loads the data
E_ij <- Freiburg$e_Freiburg2014
# industry-specific employment in Freiburg 2014
E_i <- Freiburg$e_Germany2014
# industry-specific employment in Germany 2014
gini.spec (E_ij, E_i)
# Returns the Gini coefficient of regional specialization (0.2089009)

# Example Goettingen
data(Goettingen)
# Loads the data
gini.spec(Goettingen$Goettingen2017[2:16], Goettingen$BRD2017[2:16])
# Returns the Gini coefficient of regional specialization 2017 (0.359852)

Example output

[1] 0.6222222
[1] 0.2089009
[1] 0.359852

REAT documentation built on Sept. 5, 2021, 5:18 p.m.