Description Usage Arguments Details Value Author(s) References Examples
Calculating the standardized (beta) regression coefficients of linear models
1 |
linmod |
A |
dummy.na |
logical argument that indicates if dummy variables should be ignored when calculating the beta weights (default: |
Standardized coefficients (beta coefficients) show how many standard deviations a dependent variable will change when the regarded independent variable is increased by a standard deviation. The β values are used in multiple linear regression models to compare the real effect (power) of the independent variables when they are measured in different units. Note that β values do not make any sense for dummy variables since they cannot change by a standard deviation.
A list
containing all independent variables and the corresponding standardized coefficients.
Thomas Wieland
Backhaus, K./Erichson, B./Plinke, W./Weiber, R. (2016): “Multivariate Analysemethoden: Eine anwendungsorientierte Einfuehrung”. Berlin: Springer.
1 2 3 4 5 6 7 8 9 10 11 |
Call:
lm(formula = y ~ x1 + x2)
Residuals:
Min 1Q Median 3Q Max
-0.51249 -0.26796 0.01776 0.24690 0.48131
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.58278 0.07710 7.559 2.3e-11 ***
x1 -0.08612 0.10690 -0.806 0.422
x2 -0.03125 0.09797 -0.319 0.750
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.294 on 97 degrees of freedom
Multiple R-squared: 0.007463, Adjusted R-squared: -0.013
F-statistic: 0.3647 on 2 and 97 DF, p-value: 0.6954
$x1
[1] -0.08157632
$x2
[1] -0.03230011
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.