Description Usage Arguments Details Value Author(s) References Examples
Curve fitting (similar to SPSS and Excel)
1 2 3 4 5 |
x |
a numeric vector containing the explanatory variable |
y |
a numeric vector containing the dependent variable |
y.max |
Optional: given maximum for the logistic regression function |
extrapol |
a single numeric value for how many x units the dependent variable y shall be extrapolated |
plot.curves |
Logical argument that indicates whether the curves shall be plotted or not |
pcol |
If |
ptype |
If |
psize |
If |
lin.col |
If |
pow.col |
If |
exp.col |
If |
logi.col |
If |
plot.title |
If |
plot.legend |
If |
xlab |
If |
ylab |
If |
y.min |
Optional: Y axis minimum |
... |
Optional: other plot parameters |
print.results |
Logical argument that indicates whether the model results are shown or not |
Curve fitting for a given independent and dependent variable (y = f(x)). Similar to curve fitting in SPSS or Excel. Fitting of nonlinear regression models (power, exponential, logistic) via intrinsically linear models (Rawlings et al. 1998).
A data frame
containing the regression results (Parameters a and b, std. errors, t values, ...)
Thomas Wieland
Rawlings, J. O./Pantula, S. G./Dickey, D. A. (1998): “Applied Regression Analysis”. Springer. 2nd edition.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | x <- 1:20
y <- 3-2*x
curvefit(x, y, plot.curves = TRUE)
# fit with plot
curvefit(x, y, extrapol=10, plot.curves = TRUE)
# fit and extrapolation with plot
x <- runif(20, min = 0, max = 100)
# some random data
# linear
y_resid <- runif(20, min = 0, max = 10)
# random residuals
y <- 3+(-0.112*x)+y_resid
curvefit(x, y)
# power
y_resid <- runif(20, min = 0.1, max = 0.2)
# random residuals
y <- 3*(x^-0.112)*y_resid
curvefit(x, y)
# exponential
y_resid <- runif(20, min = 0.1, max = 0.2)
# random residuals
y <- 3*exp(-0.112*x)*y_resid
curvefit(x, y)
# logistic
y_resid <- runif(20, min = 0.1, max = 0.2)
# random residuals
y <- 100/(1+exp(3+(-0.112*x)))*y_resid
curvefit(x, y)
|
Curve fitting
a b Std. Error a Std. Error b t value a t value b
Linear 3 -2 2.289454e-15 1.911199e-16 1.310356e+15 -1.046463e+16
Power NA NA NA NA NA NA
Exponential NA NA NA NA NA NA
Logistic NA NA NA NA NA NA
Pr(>|t|) a Pr(>|t|) b R squared Adj. R squared F value
Linear 2.83609e-262 1.62441e-278 1 1 1.095085e+32
Power NA NA NA NA NA
Exponential NA NA NA NA NA
Logistic NA NA NA NA NA
Pr(>F)
Linear 1.62441e-278
Power NA
Exponential NA
Logistic NA
Warning message:
In summary.lm(modlin) : essentially perfect fit: summary may be unreliable
Curve fitting
a b Std. Error a Std. Error b t value a t value b
Linear 3 -2 2.289454e-15 1.911199e-16 1.310356e+15 -1.046463e+16
Power NA NA NA NA NA NA
Exponential NA NA NA NA NA NA
Logistic NA NA NA NA NA NA
Pr(>|t|) a Pr(>|t|) b R squared Adj. R squared F value
Linear 2.83609e-262 1.62441e-278 1 1 1.095085e+32
Power NA NA NA NA NA
Exponential NA NA NA NA NA
Logistic NA NA NA NA NA
Pr(>F)
Linear 1.62441e-278
Power NA
Exponential NA
Logistic NA
Warning message:
In summary.lm(modlin) : essentially perfect fit: summary may be unreliable
Curve fitting
a b Std. Error a Std. Error b t value a t value b
Linear 9.509779 -0.1309513 1.591616 0.02589046 5.97492 -5.057899
Power NA NA NA NA NA NA
Exponential NA NA NA NA NA NA
Logistic NA NA NA NA NA NA
Pr(>|t|) a Pr(>|t|) b R squared Adj. R squared F value
Linear 1.186446e-05 8.19206e-05 0.5869887 0.5640436 25.58234
Power NA NA NA NA NA
Exponential NA NA NA NA NA
Logistic NA NA NA NA NA
Pr(>F)
Linear 8.19206e-05
Power NA
Exponential NA
Logistic NA
Curve fitting
a b Std. Error a Std. Error b t value a
Linear 0.3576842 -0.0009183456 0.0286013 0.0004652508 12.505872
Power 0.5713157 -0.1659966580 0.1343102 0.0793191856 -1.810166
Exponential 0.3515556 -0.0028305433 0.0997319 0.0016223161 -10.481977
Logistic -2.8680982 0.0250978809 0.6874205 0.0111821125 -4.172262
t value b Pr(>|t|) a Pr(>|t|) b R squared Adj. R squared F value
Linear -1.973872 2.588618e-10 0.06394683 0.1779384 0.13226836 3.896171
Power -2.092768 8.699750e-02 0.05080466 0.1956989 0.15101549 4.379678
Exponential -1.744754 4.307278e-09 0.09807728 0.1446561 0.09713703 3.044168
Logistic 2.244467 5.724344e-04 0.03761070 0.2186697 0.17526244 5.037631
Pr(>F)
Linear 0.06394683
Power 0.05080466
Exponential 0.09807728
Logistic 0.03761070
Curve fitting
a b Std. Error a Std. Error b t value a
Linear 3.345317e-02 -0.00041549 0.005772462 9.389933e-05 5.795304
Power 1.674240e+06 -5.51931314 0.488827015 2.886852e-01 12.732147
Exponential 4.327088e-01 -0.11193633 0.095298642 1.550201e-03 -8.790160
Logistic -4.705883e+00 0.14427698 0.766397259 1.246681e-02 -6.140266
t value b Pr(>|t|) a Pr(>|t|) b R squared Adj. R squared
Linear -4.424845 1.718516e-05 3.269983e-04 0.5210123 0.4944019
Power -19.118798 1.933847e-10 2.093747e-13 0.9530674 0.9504600
Exponential -72.207611 6.248707e-08 1.254402e-23 0.9965596 0.9963685
Logistic 11.572887 8.466784e-06 9.023981e-10 0.8815257 0.8749438
F value Pr(>F)
Linear 19.57925 3.269983e-04
Power 365.52843 2.093747e-13
Exponential 5213.93913 1.254402e-23
Logistic 133.93172 9.023981e-10
Curve fitting
a b Std. Error a Std. Error b t value a t value b
Linear 4.2961034 0.14068942 1.5136474 0.024622157 2.838246 5.713935
Power 0.5595153 0.76652654 0.1939492 0.114540048 -1.300278 6.692214
Exponential 5.0742138 0.01375305 0.1682757 0.002737303 9.651846 5.024305
Logistic 1.8799623 -0.04857271 0.6430932 0.010461050 2.923312 -4.643197
Pr(>|t|) a Pr(>|t|) b R squared Adj. R squared F value
Linear 1.090392e-02 2.035297e-05 0.6446133 0.6248696 32.64906
Power 2.099091e-01 2.818216e-06 0.7133107 0.6973835 44.78573
Exponential 1.536412e-08 8.808646e-05 0.5837539 0.5606291 25.24364
Logistic 9.076301e-03 2.021262e-04 0.5449866 0.5197081 21.55928
Pr(>F)
Linear 2.035297e-05
Power 2.818216e-06
Exponential 8.808646e-05
Logistic 2.021262e-04
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.