asAnscombe | R Documentation |
Generates an object of class "asAnscombe"
.
asAnscombe(eff = .95, biastype = symmetricBias(), normtype = NormType())
eff |
value in (0,1]: ARE in the ideal model |
biastype |
a bias type of class |
normtype |
a norm type of class |
Object of class asAnscombe
Peter Ruckdeschel peter.ruckdeschel@fraunhofer.itwm.de
F.J. Anscombe (1960). Rejection of Outliers. Technometrics 2(2): 123-146. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00401706.1960.10489888")}.
F. Hampel et al. (1986). Robust Statistics. The Approach Based on Influence Functions. New York: Wiley. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/9781118186435")}.
M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation. University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
H. Rieder (1994). Robust Asymptotic Statistics. Springer. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-1-4684-0624-5")}.
asAnscombe-class
asAnscombe()
## The function is currently defined as
function(eff = .95, biastype = symmetricBias(), normtype = NormType()){
new("asAnscombe", eff = eff, biastype = biastype, normtype = normtype) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.