leastFavorableRadius | R Documentation |
Generic function for the computation of least favorable radii.
leastFavorableRadius(L2Fam, neighbor, risk, ...)
## S4 method for signature 'L2ParamFamily,UncondNeighborhood,asGRisk'
leastFavorableRadius(
L2Fam, neighbor, risk, rho, upRad = 1,
z.start = NULL, A.start = NULL, upper = 100,
OptOrIter = "iterate", maxiter = 100,
tol = .Machine$double.eps^0.4, warn = FALSE, verbose = NULL, ...)
L2Fam |
L2-differentiable family of probability measures. |
neighbor |
object of class |
risk |
object of class |
upRad |
the upper end point of the radius interval to be searched. |
rho |
The considered radius interval is: |
z.start |
initial value for the centering constant. |
A.start |
initial value for the standardizing matrix. |
upper |
upper bound for the optimal clipping bound. |
OptOrIter |
character; which method to be used for determining Lagrange
multipliers |
maxiter |
the maximum number of iterations |
tol |
the desired accuracy (convergence tolerance). |
warn |
logical: print warnings. |
verbose |
logical: if |
... |
additional arguments to be passed to |
The least favorable radius and the corresponding inefficiency are computed.
computation of the least favorable radius.
Matthias Kohl Matthias.Kohl@stamats.de, Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of not Knowing the Radius. Statistical Methods and Applications, 17(1) 13-40. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10260-007-0047-7")}.
H. Rieder, M. Kohl, and P. Ruckdeschel (2001). The Costs of not Knowing the Radius. Appeared as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Processes), Humboldt University, Berlin; also available under \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18452/3638")}.
P. Ruckdeschel (2005). Optimally One-Sided Bounded Influence Curves. Mathematical Methods of Statistics 14(1), 105-131.
P. Ruckdeschel and H. Rieder (2004). Optimal Influence Curves for General Loss Functions. Statistics & Decisions 22, 201-223. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1524/stnd.22.3.201.57067")}
radiusMinimaxIC
N <- NormLocationFamily(mean=0, sd=1)
leastFavorableRadius(L2Fam=N, neighbor=ContNeighborhood(),
risk=asMSE(), rho=0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.