robest | R Documentation |
Function to compute optimally robust estimates for L2-differentiable parametric families via k-step construction.
robest(x, L2Fam, fsCor = 1, risk = asMSE(), steps = 1L,
verbose = NULL, OptOrIter = "iterate", nbCtrl = gennbCtrl(),
startCtrl = genstartCtrl(), startICCtrl = genstartICCtrl(),
kStepCtrl = genkStepCtrl(), na.rm = TRUE, ..., debug = FALSE,
withTimings = FALSE, diagnostic = FALSE)
x |
sample |
L2Fam |
object of class |
fsCor |
positive real: factor used to correct the neighborhood radius; see details. |
risk |
object of class |
steps |
positive integer: number of steps used for k-steps construction |
verbose |
logical: if |
OptOrIter |
character; which method to be used for determining Lagrange
multipliers |
nbCtrl |
a list specifying input concerning the used neighborhood;
to be generated by a respective call to |
startCtrl |
a list specifying input concerning the used starting estimator;
to be generated by a respective call to |
startICCtrl |
a list specifying input concerning the call to
|
kStepCtrl |
a list specifying input concerning the used variant of
a kstepEstimator;
to be generated by a respective call to |
na.rm |
logical: if |
... |
further arguments |
debug |
logical: if |
withTimings |
logical: if |
diagnostic |
logical; if |
A new, more structured interface to the former function roptest
.
For details, see this function.
In some respects this functions allows for more granular arguments,
in the sense that the different steps (a) computation of the inital estimator,
resp. (a') in case initial.est
is missing computation of the initial
MDE, (b) computation of the optimal IC and (c) computation of the k-step
estimator each can have individial arguments E.arglist
to be
passed on to calls to expectation operator E
within each step.
These different arguments are passed through the input generating functions
genstartCtrl
,
genstartICCtrl
, and
kStepCtrl
Diagnostics on the involved integrations are available if argument
diagnostic
is TRUE
. Then there are attributes diagnostic
and kStepDiagnostic
attached to the return value, which may be inspected
and assessed through showDiagnostic
and
getDiagnostic
.
Object of class "kStepEstimate"
. In addition, it has
an attribute "timings"
where computation time is stored.
Matthias Kohl Matthias.Kohl@stamats.de,
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
Kohl, M. and Ruckdeschel, P. (2010): R package distrMod: Object-Oriented Implementation of Probability Models. J. Statist. Softw. 35(10), 1–27. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v035.i10")}.
Kohl, M. and Ruckdeschel, P., and Rieder, H. (2010): Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Stat. Methods Appl., 19, 333–354. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10260-010-0133-0")}.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-1-4684-0624-5")}.
Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical Methods and Applications 17(1) 13-40. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10260-007-0047-7")}.
Rieder, H., Kohl, M. and Ruckdeschel, P. (2001) The Costs of not Knowing the Radius. Appeared as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Processes), Humboldt University, Berlin; also available under \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18452/3638")}
roblox
,
L2ParamFamily-class
UncondNeighborhood-class
,
RiskType-class
## Don't test to reduce check time on CRAN
#############################
## 1. Binomial data
#############################
## generate a sample of contaminated data
set.seed(123)
ind <- rbinom(100, size=1, prob=0.05)
x <- rbinom(100, size=25, prob=(1-ind)*0.25 + ind*0.9)
## Family
BF <- BinomFamily(size = 25)
## ML-estimate
MLest <- MLEstimator(x, BF)
estimate(MLest)
confint(MLest)
## compute optimally robust estimator (known contamination)
nb <- gennbCtrl(eps=0.05)
robest1 <- robest(x, BF, nbCtrl = nb, steps = 3)
estimate(robest1)
confint(robest1, method = symmetricBias())
## neglecting bias
confint(robest1)
plot(pIC(robest1))
tmp <- qqplot(x, robest1, cex.pch=1.5, exp.cex2.pch = -.25,
exp.fadcol.pch = .55, jit.fac=.9)
## compute optimally robust estimator (unknown contamination)
nb2 <- gennbCtrl(eps.lower = 0, eps.upper = 0.2)
robest2 <- robest(x, BF, nbCtrl = nb2, steps = 3)
estimate(robest2)
confint(robest2, method = symmetricBias())
plot(pIC(robest2))
## total variation neighborhoods (known deviation)
nb3 <- gennbCtrl(eps = 0.025, neighbor = TotalVarNeighborhood())
robest3 <- robest(x, BF, nbCtrl = nb3, steps = 3)
estimate(robest3)
confint(robest3, method = symmetricBias())
plot(pIC(robest3))
## total variation neighborhoods (unknown deviation)
nb4 <- gennbCtrl(eps.lower = 0, eps.upper = 0.1,
neighbor = TotalVarNeighborhood())
robest3 <- robest(x, BF, nbCtrl = nb4, steps = 3)
robest4 <- robest(x, BinomFamily(size = 25), nbCtrl = nb4, steps = 3)
estimate(robest4)
confint(robest4, method = symmetricBias())
plot(pIC(robest4))
#############################
## 2. Poisson data
#############################
## Example: Rutherford-Geiger (1910); cf. Feller~(1968), Section VI.7 (a)
x <- c(rep(0, 57), rep(1, 203), rep(2, 383), rep(3, 525), rep(4, 532),
rep(5, 408), rep(6, 273), rep(7, 139), rep(8, 45), rep(9, 27),
rep(10, 10), rep(11, 4), rep(12, 0), rep(13, 1), rep(14, 1))
## Family
PF <- PoisFamily()
## ML-estimate
MLest <- MLEstimator(x, PF)
estimate(MLest)
confint(MLest)
## compute optimally robust estimator (unknown contamination)
nb1 <- gennbCtrl(eps.upper = 0.1)
robest <- robest(x, PF, nbCtrl = nb1, steps = 3)
estimate(robest)
confint(robest, symmetricBias())
plot(pIC(robest))
tmp <- qqplot(x, robest, cex.pch=1.5, exp.cex2.pch = -.25,
exp.fadcol.pch = .55, jit.fac=.9)
## total variation neighborhoods (unknown deviation)
nb2 <- gennbCtrl(eps.upper = 0.05, neighbor = TotalVarNeighborhood())
robest1 <- robest(x, PF, nbCtrl = nb2, steps = 3)
estimate(robest1)
confint(robest1, symmetricBias())
plot(pIC(robest1))
#############################
## 3. Normal (Gaussian) location and scale
#############################
## this example of a two dimensional parameter
## to be estimated will need more time than
## 5 seconds to run
## you can find it in
## system.file("scripts", "examples_taking_longer.R",
## package="ROptEst")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.