optIC | R Documentation |
Generic function for the computation of optimally robust ICs.
optIC(model, risk, ...)
## S4 method for signature 'InfRobModel,asRisk'
optIC(model, risk, z.start = NULL, A.start = NULL,
upper = 1e4, lower = 1e-4,
OptOrIter = "iterate", maxiter = 50,
tol = .Machine$double.eps^0.4, warn = TRUE,
noLow = FALSE, verbose = NULL, ...,
.withEvalAsVar = TRUE, withMakeIC = FALSE,
returnNAifProblem = FALSE, modifyICwarn = NULL)
## S4 method for signature 'InfRobModel,asUnOvShoot'
optIC(model, risk, upper = 1e4,
lower = 1e-4, maxiter = 50,
tol = .Machine$double.eps^0.4,
withMakeIC = FALSE, warn = TRUE,
verbose = NULL, modifyICwarn = NULL, ...)
## S4 method for signature 'FixRobModel,fiUnOvShoot'
optIC(model, risk, sampleSize, upper = 1e4, lower = 1e-4,
maxiter = 50, tol = .Machine$double.eps^0.4,
withMakeIC = FALSE, warn = TRUE,
Algo = "A", cont = "left",
verbose = NULL, modifyICwarn = NULL, ...)
model |
probability model. |
risk |
object of class |
... |
additional arguments; e.g. are passed on to |
z.start |
initial value for the centering constant. |
A.start |
initial value for the standardizing matrix. |
upper |
upper bound for the optimal clipping bound. |
lower |
lower bound for the optimal clipping bound. |
maxiter |
the maximum number of iterations. |
tol |
the desired accuracy (convergence tolerance). |
warn |
logical: print warnings. |
sampleSize |
integer: sample size. |
Algo |
"A" or "B". |
cont |
"left" or "right". |
noLow |
logical: is lower case to be computed? |
OptOrIter |
character; which method to be used for determining Lagrange
multipliers |
verbose |
logical: if |
.withEvalAsVar |
logical (of length 1):
if |
withMakeIC |
logical; if |
returnNAifProblem |
logical (of length 1):
if |
modifyICwarn |
logical: should a (warning) information be added if
|
In case of the finite-sample risk "fiUnOvShoot"
one can choose
between two algorithms for the computation of this risk where the least favorable
contamination is assumed to be left or right of some bound. For more details
we refer to Section 11.3 of Kohl (2005).
Some optimally robust IC is computed.
computes optimally robust influence curve for robust models with infinitesimal neighborhoods and various asymptotic risks.
computes optimally robust influence curve for robust models with infinitesimal neighborhoods and asymptotic under-/overshoot risk.
computes optimally robust influence curve for robust models with fixed neighborhoods and finite-sample under-/overshoot risk.
Matthias Kohl Matthias.Kohl@stamats.de
Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269–278.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
Kohl, M. and Ruckdeschel, P. (2010): R package distrMod: Object-Oriented Implementation of Probability Models. J. Statist. Softw. 35(10), 1–27. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v035.i10")}.
Kohl, M. and Ruckdeschel, P., and Rieder, H. (2010): Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Stat. Methods Appl., 19, 333–354. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10260-010-0133-0")}.
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-1-4684-0624-5")}.
Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical Methods and Applications 17(1) 13-40. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10260-007-0047-7")}.
Rieder, H., Kohl, M. and Ruckdeschel, P. (2001) The Costs of not Knowing the Radius. Appeared as discussion paper Nr. 81. SFB 373 (Quantification and Simulation of Economic Processes), Humboldt University, Berlin; also available under \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18452/3638")}.
InfluenceCurve-class
, RiskType-class
B <- BinomFamily(size = 25, prob = 0.25)
## classical optimal IC
IC0 <- optIC(model = B, risk = asCov())
plot(IC0) # plot IC
checkIC(IC0, B)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.