View source: R/EMNearestMeanClassifier.R
EMNearestMeanClassifier | R Documentation |
Expectation Maximization applied to the nearest mean classifier assuming Gaussian classes with a spherical covariance matrix.
EMNearestMeanClassifier(X, y, X_u, method = "EM", scale = FALSE,
eps = 1e-04)
X |
matrix; Design matrix for labeled data |
y |
factor or integer vector; Label vector |
X_u |
matrix; Design matrix for unlabeled data |
method |
character; Currently only "EM" |
scale |
Should the features be normalized? (default: FALSE) |
eps |
Stopping criterion for the maximinimization |
Starting from the supervised solution, uses the Expectation Maximization algorithm (see Dempster et al. (1977)) to iteratively update the means and shared covariance of the classes (Maximization step) and updates the responsibilities for the unlabeled objects (Expectation step).
Dempster, A., Laird, N. & Rubin, D., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B, 39(1), pp.1-38.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.