| LinearSVM | R Documentation | 
Implementation of the Linear Support Vector Classifier. Can be solved in the Dual formulation, which is equivalent to SVM or the Primal formulation.
LinearSVM(X, y, C = 1, method = "Dual", scale = TRUE, eps = 1e-09,
  reltol = 1e-13, maxit = 100)
| X | matrix; Design matrix for labeled data | 
| y | factor or integer vector; Label vector | 
| C | Cost variable | 
| method | Estimation procedure c("Dual","Primal","BGD") | 
| scale | Whether a z-transform should be applied (default: TRUE) | 
| eps | Small value to ensure positive definiteness of the matrix in QP formulation | 
| reltol | relative tolerance using during BFGS optimization | 
| maxit | Maximum number of iterations for BFGS optimization | 
S4 object of type LinearSVM
Other RSSL classifiers: 
EMLeastSquaresClassifier,
EMLinearDiscriminantClassifier,
GRFClassifier,
ICLeastSquaresClassifier,
ICLinearDiscriminantClassifier,
KernelLeastSquaresClassifier,
LaplacianKernelLeastSquaresClassifier(),
LaplacianSVM,
LeastSquaresClassifier,
LinearDiscriminantClassifier,
LinearTSVM(),
LogisticLossClassifier,
LogisticRegression,
MCLinearDiscriminantClassifier,
MCNearestMeanClassifier,
MCPLDA,
MajorityClassClassifier,
NearestMeanClassifier,
QuadraticDiscriminantClassifier,
S4VM,
SVM,
SelfLearning,
TSVM,
USMLeastSquaresClassifier,
WellSVM,
svmlin()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.