View source: R/KernelICLeastSquaresClassifier.R
| KernelICLeastSquaresClassifier | R Documentation | 
A kernel version of the implicitly constrained least squares classifier, see ICLeastSquaresClassifier.
KernelICLeastSquaresClassifier(X, y, X_u, lambda = 0,
  kernel = vanilladot(), x_center = TRUE, scale = TRUE, y_scale = TRUE,
  lambda_prior = 0, classprior = 0, method = "LBFGS",
  projection = "semisupervised")
| X | matrix; Design matrix for labeled data | 
| y | factor or integer vector; Label vector | 
| X_u | matrix; Design matrix for unlabeled data | 
| lambda | numeric; L2 regularization parameter | 
| kernel | kernlab::kernel to use | 
| x_center | logical; Should the features be centered? | 
| scale | logical; Should the features be normalized? (default: FALSE) | 
| y_scale | logical; whether the target vector should be centered | 
| lambda_prior | numeric; regularization parameter for the posterior deviation from the prior | 
| classprior | The classprior used to compare the estimated responsibilities to | 
| method | character; Estimation method. One of c("LBFGS") | 
| projection | character; The projection used. One of c("supervised","semisupervised") | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.