View source: R/LogisticLossClassifier.R
| LogisticLossClassifier | R Documentation | 
Find the linear classifier which minimizing the logistic loss on the training set, optionally using L2 regularization.
LogisticLossClassifier(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
  init = NA, x_center = FALSE, ...)
| X | Design matrix, intercept term is added within the function | 
| y | Vector with class assignments | 
| lambda | Regularization parameter used for l2 regularization | 
| intercept | TRUE if an intercept should be added to the model | 
| scale | If TRUE, apply a z-transform to all observations in X and X_u before running the regression | 
| init | Starting parameter vector for gradient descent | 
| x_center | logical; Whether the feature vectors should be centered | 
| ... | additional arguments | 
S4 object with the following slots
| w | the weight vector of the linear classifier | 
| classnames | vector with names of the classes | 
Other RSSL classifiers: 
EMLeastSquaresClassifier,
EMLinearDiscriminantClassifier,
GRFClassifier,
ICLeastSquaresClassifier,
ICLinearDiscriminantClassifier,
KernelLeastSquaresClassifier,
LaplacianKernelLeastSquaresClassifier(),
LaplacianSVM,
LeastSquaresClassifier,
LinearDiscriminantClassifier,
LinearSVM,
LinearTSVM(),
LogisticRegression,
MCLinearDiscriminantClassifier,
MCNearestMeanClassifier,
MCPLDA,
MajorityClassClassifier,
NearestMeanClassifier,
QuadraticDiscriminantClassifier,
S4VM,
SVM,
SelfLearning,
TSVM,
USMLeastSquaresClassifier,
WellSVM,
svmlin()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.