View source: R/LogisticRegression.R
| LogisticRegression | R Documentation | 
Implementation of Logistic Regression that is useful for comparisons with semi-supervised logistic regression implementations, such as EntropyRegularizedLogisticRegression.
LogisticRegression(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
  init = NA, x_center = FALSE)
| X | matrix; Design matrix for labeled data | 
| y | factor or integer vector; Label vector | 
| lambda | numeric; L2 regularization parameter | 
| intercept | logical; Whether an intercept should be included | 
| scale | logical; Should the features be normalized? (default: FALSE) | 
| init | numeric; Initialization of parameters for the optimization | 
| x_center | logical; Should the features be centered? | 
Other RSSL classifiers: 
EMLeastSquaresClassifier,
EMLinearDiscriminantClassifier,
GRFClassifier,
ICLeastSquaresClassifier,
ICLinearDiscriminantClassifier,
KernelLeastSquaresClassifier,
LaplacianKernelLeastSquaresClassifier(),
LaplacianSVM,
LeastSquaresClassifier,
LinearDiscriminantClassifier,
LinearSVM,
LinearTSVM(),
LogisticLossClassifier,
MCLinearDiscriminantClassifier,
MCNearestMeanClassifier,
MCPLDA,
MajorityClassClassifier,
NearestMeanClassifier,
QuadraticDiscriminantClassifier,
S4VM,
SVM,
SelfLearning,
TSVM,
USMLeastSquaresClassifier,
WellSVM,
svmlin()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.