inst/examples/RcppGibbs/RcppGibbs.R

## Simple Gibbs Sampler Example
## Adapted from Darren Wilkinson's post at
## http://darrenjw.wordpress.com/2010/04/28/mcmc-programming-in-r-python-java-and-c/
##
## Sanjog Misra and Dirk Eddelbuettel, June-July 2011

suppressMessages(library(Rcpp))
suppressMessages(library(inline))
suppressMessages(library(compiler))
suppressMessages(library(rbenchmark))


## Actual joint density -- the code which follow implements
## a Gibbs sampler to draw from the following joint density f(x,y)
fun <- function(x,y) {
    x*x * exp(-x*y*y - y*y + 2*y - 4*x)
}

## Note that the full conditionals are propotional to
## f(x|y) = (x^2)*exp(-x*(4+y*y))              : a Gamma density kernel
## f(y|x) = exp(-0.5*2*(x+1)*(y^2 - 2*y/(x+1)) : Normal Kernel

## There is a small typo in Darrens code.
## The full conditional for the normal has the wrong variance
## It should be 1/sqrt(2*(x+1)) not 1/sqrt(1+x)
## This we can verify ...
## The actual conditional (say for x=3) can be computed as follows
## First - Construct the Unnormalized Conditional
fy.unnorm <- function(y) fun(3,y)

## Then - Find the appropriate Normalizing Constant
K <- integrate(fy.unnorm,-Inf,Inf)

## Finally - Construct Actual Conditional
fy <- function(y) fy.unnorm(y)/K$val

## Now - The corresponding Normal should be
fy.dnorm <- function(y) {
    x <- 3
    dnorm(y,1/(1+x),sqrt(1/(2*(1+x))))
}

## and not ...
fy.dnorm.wrong <- function(y) {
    x <- 3
    dnorm(y,1/(1+x),sqrt(1/((1+x))))
}

if (interactive()) {
    ## Graphical check
    ## Actual (gray thick line)
    curve(fy,-2,2,col='grey',lwd=5)

    ## Correct Normal conditional (blue dotted line)
    curve(fy.dnorm,-2,2,col='blue',add=T,lty=3)

    ## Wrong Normal (Red line)
    curve(fy.dnorm.wrong,-2,2,col='red',add=T)
}

## Here is the actual Gibbs Sampler
## This is Darren Wilkinsons R code (with the corrected variance)
## But we are returning only his columns 2 and 3 as the 1:N sequence
## is never used below
Rgibbs <- function(N,thin) {
    mat <- matrix(0,ncol=2,nrow=N)
    x <- 0
    y <- 0
    for (i in 1:N) {
        for (j in 1:thin) {
            x <- rgamma(1,3,y*y+4)
            y <- rnorm(1,1/(x+1),1/sqrt(2*(x+1)))
        }
        mat[i,] <- c(x,y)
    }
    mat
}

## We can also try the R compiler on this R function
RCgibbs <- cmpfun(Rgibbs)

## For example
## mat <- Rgibbs(10000,10); dim(mat)
## would give: [1] 10000     2

## Now for the Rcpp version -- Notice how easy it is to code up!

## NOTE: This is the old way to compile Rcpp code inline.
## The code here has left as a historical artifact and tribute to the old way.
## Please use the code under the "new" inline compilation section.

gibbscode <- '

  using namespace Rcpp;   // inline does that for us already

  // n and thin are SEXPs which the Rcpp::as function maps to C++ vars
  int N   = as<int>(n);
  int thn = as<int>(thin);

  int i,j;
  NumericMatrix mat(N, 2);

  RNGScope scope;         // Initialize Random number generator. Not needed when Attributes used.

  // The rest of the code follows the R version
  double x=0, y=0;

  for (i=0; i<N; i++) {
    for (j=0; j<thn; j++) {
      x = ::Rf_rgamma(3.0,1.0/(y*y+4));
      y = ::Rf_rnorm(1.0/(x+1),1.0/sqrt(2*x+2));
    }
    mat(i,0) = x;
    mat(i,1) = y;
  }

  return mat;             // Return to R
'

# Compile and Load
RcppGibbs_old <- cxxfunction(signature(n="int", thin = "int"),
                         gibbscode, plugin="Rcpp")


gslgibbsincl <- '
  #include <gsl/gsl_rng.h>
  #include <gsl/gsl_randist.h>

  using namespace Rcpp;  // just to be explicit
'

gslgibbscode <- '
  int N = as<int>(ns);
  int thin = as<int>(thns);
  int i, j;
  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
  double x=0, y=0;
  NumericMatrix mat(N, 2);
  for (i=0; i<N; i++) {
    for (j=0; j<thin; j++) {
      x = gsl_ran_gamma(r,3.0,1.0/(y*y+4));
      y = 1.0/(x+1)+gsl_ran_gaussian(r,1.0/sqrt(2*x+2));
    }
    mat(i,0) = x;
    mat(i,1) = y;
  }
  gsl_rng_free(r);

  return mat;           // Return to R
'

## Compile and Load
GSLGibbs_old <- cxxfunction(signature(ns="int", thns = "int"),
                        body=gslgibbscode, includes=gslgibbsincl,
                        plugin="RcppGSL")

## without RcppGSL, using cfunction()
#GSLGibbs <- cfunction(signature(ns="int", thns = "int"),
#                      body=gslgibbscode, includes=gslgibbsincl,
#                      Rcpp=TRUE,
#                      cppargs="-I/usr/include",
#                      libargs="-lgsl -lgslcblas")


## NOTE: Within this section, the new way to compile Rcpp code inline has been
## written. Please use the code next as a template for your own project.

## Use of the cppFunction() gives the ability to immediately compile embed C++
## without having to worry about header specification or Rcpp attributes.

cppFunction('
NumericMatrix RcppGibbs(int N, int thn){
    // Note: n and thin are SEXPs which the Rcpp automatically converts to ints

    // Setup storage matrix
    NumericMatrix mat(N, 2);

    // The rest of the code follows the R version
    double x = 0, y = 0;

    for (int i = 0; i < N; i++) {
        for (int j = 0; j < thn; j++) {
            x = R::rgamma(3.0,1.0/(y*y+4));
            y = R::rnorm(1.0/(x+1),1.0/sqrt(2*x+2));
        }
        mat(i,0) = x;
        mat(i,1) = y;
    }

    return mat;             // Return to R
}')


## Use of the sourceCpp() is preferred for users who wish to source external
## files or specify their headers and Rcpp attributes within their code.
## Code here is able to easily be extracted and placed into its own C++ file.

## Compile and Load
sourceCpp(code="
#include <RcppGSL.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

using namespace Rcpp;  // just to be explicit

// [[Rcpp::depends(RcppGSL)]]

// [[Rcpp::export]]
NumericMatrix GSLGibbs(int N, int thin){
    gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
    double x = 0, y = 0;
    NumericMatrix mat(N, 2);
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < thin; j++) {
            x = gsl_ran_gamma(r,3.0,1.0/(y*y+4));
            y = 1.0/(x+1)+gsl_ran_gaussian(r,1.0/sqrt(2*x+2));
        }
        mat(i,0) = x;
        mat(i,1) = y;
    }
    gsl_rng_free(r);

    return mat;           // Return to R
}")



## Now for some tests
## You can try other values if you like
## Note that the total number of interations are N*thin!
Ns <- c(1000,5000,10000,20000)
thins <- c(10,50,100,200)
tim_R <- rep(0,4)
tim_RC <- rep(0,4)
tim_Rgsl <- rep(0,4)
tim_Rcpp <- rep(0,4)

for (i in seq_along(Ns)) {
    tim_R[i] <- system.time(mat <- Rgibbs(Ns[i],thins[i]))[3]
    tim_RC[i] <- system.time(cmat <- RCgibbs(Ns[i],thins[i]))[3]
    tim_Rgsl[i] <- system.time(gslmat <- GSLGibbs(Ns[i],thins[i]))[3]
    tim_Rcpp[i] <- system.time(rcppmat <- RcppGibbs(Ns[i],thins[i]))[3]
    cat("Replication #", i, "complete \n")
}

## Comparison
speedup <- round(tim_R/tim_Rcpp,2);
speedup2 <- round(tim_R/tim_Rgsl,2);
speedup3 <- round(tim_R/tim_RC,2);
summtab <- round(rbind(tim_R,tim_RC, tim_Rcpp,tim_Rgsl,speedup3,speedup,speedup2),3)
colnames(summtab) <- c("N=1000","N=5000","N=10000","N=20000")
rownames(summtab) <- c("Elasped Time (R)","Elasped Time (RC)","Elapsed Time (Rcpp)", "Elapsed Time (Rgsl)",
                       "SpeedUp Rcomp.","SpeedUp Rcpp", "SpeedUp GSL")

print(summtab)

## Contour Plots -- based on Darren's example
if (interactive() && require(KernSmooth)) {
    op <- par(mfrow=c(4,1),mar=c(3,3,3,1))
    x <- seq(0,4,0.01)
    y <- seq(-2,4,0.01)
    z <- outer(x,y,fun)
    contour(x,y,z,main="Contours of actual distribution",xlim=c(0,2), ylim=c(-2,4))
    fit <- bkde2D(as.matrix(mat),c(0.1,0.1))
    contour(drawlabels=T, fit$x1, fit$x2, fit$fhat, xlim=c(0,2), ylim=c(-2,4),
            main=paste("Contours of empirical distribution:",round(tim_R[4],2)," seconds"))
    fitc <- bkde2D(as.matrix(rcppmat),c(0.1,0.1))
    contour(fitc$x1,fitc$x2,fitc$fhat,xlim=c(0,2), ylim=c(-2,4),
            main=paste("Contours of Rcpp based empirical distribution:",round(tim_Rcpp[4],2)," seconds"))
    fitg <- bkde2D(as.matrix(gslmat),c(0.1,0.1))
    contour(fitg$x1,fitg$x2,fitg$fhat,xlim=c(0,2), ylim=c(-2,4),
            main=paste("Contours of GSL based empirical distribution:",round(tim_Rgsl[4],2)," seconds"))
    par(op)
}


## also use rbenchmark package
N <- 20000
thn <- 200
res <- benchmark(Rgibbs(N, thn),
                 RCgibbs(N, thn),
                 RcppGibbs(N, thn),
                 GSLGibbs(N, thn),
                 columns=c("test", "replications", "elapsed",
                           "relative", "user.self", "sys.self"),
                 order="relative",
                 replications=10)
print(res)


## And we are done

Try the Rcpp package in your browser

Any scripts or data that you put into this service are public.

Rcpp documentation built on May 29, 2024, 10:56 a.m.