evaluation: Observed sequence evaluation given a model

Description Usage Arguments Details Value References See Also Examples

Description

This function computes the log-likelihood of an observed sequence being generated by a hidden Markov model with fixed parameters.

Usage

1
evaluation(hmm , sequence , method = "f" )

Arguments

hmm

a list with the necessary variables to define a hidden Markov model.

sequence

sequence of observations to be evaluated. HMM and PHMM use a vector. GHMM uses a matrix.

method

method specified to perform the evaluation

Details

The methods to be selected can be "f" for the forward algorithm or "b" for the backward algorithm. GHMM uses a matrix with the variables as rows and consecutive observations in the columns.

Value

A value that represents the log-likelihood of the sequence given the hiddden Markov model.

References

Cited references are listed on the RcppHMM manual page.

See Also

generateObservations , verifyModel , loglikelihood

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
## Values for a hidden Markov model with categorical observations
# Set the model parameters
n <- c("First","Second")
m <- c("A","T","C","G")
A <- matrix(c(0.8,0.2,
              0.1,0.9),
            nrow = 2,
            byrow = TRUE)

B <- matrix(c(0.2, 0.2, 0.3, 0.3,
              0.4, 0.4, 0.1, 0.1),
            nrow = 2,
            byrow = TRUE)

Pi <- c(0.5, 0.5)

params <- list( "Model" = "HMM",
                "StateNames" = n,
                "ObservationNames" = m,
                "A" = A,
                "B" = B,
                "Pi" = Pi)

HMM <- verifyModel(params)

# Data simulation
set.seed(100)
length <- 100
observationSequence <- generateObservations(HMM, length)

#Sequence evaluation

# It assumes that it will be evaluated using the forward algorithm
evaluation(HMM, observationSequence$Y)  

# The user sets the backward algorithm to evaluate the algorithm
evaluation(HMM, observationSequence$Y, "b") 

## Values for a hidden Markov model with discrete observations

n <- c("Low","Normal","High")

A <- matrix(c(0.5, 0.3,0.2,
              0.2, 0.6, 0.2,
              0.1, 0.3, 0.6),
            ncol=length(n), byrow=TRUE)

B <- c(2600,  # First distribution with mean 2600
       2700,  # Second distribution with mean 2700
       2800)  # Third distribution with mean 2800

Pi <- rep(1/length(n), length(n))

HMM.discrete <- verifyModel(list("Model"="PHMM", "StateNames" = n, "A" = A, "B" = B, "Pi" = Pi))

# Data simulation
set.seed(100)
length <- 100
observationSequence <- generateObservations(HMM.discrete, length)

#Sequence evaluation

# It assumes that it will be evaluated using the forward algorithm
evaluation(HMM.discrete, observationSequence$Y)  

# The user sets the backward algorithm to evaluate the algorithm
evaluation(HMM.discrete, observationSequence$Y, "b") 

## Values for a hidden Markov model with continuous observations                          
# Number of hidden states = 3
# Univariate gaussian mixture model

N = c("Low","Normal", "High")
A <- matrix(c(0.5, 0.3,0.2,
              0.2, 0.6, 0.2,
              0.1, 0.3, 0.6),
            ncol= length(N), byrow = TRUE)

Mu <- matrix(c(0, 50, 100), ncol = length(N))
Sigma <- array(c(144, 400, 100), dim = c(1,1,length(N)))
Pi <- rep(1/length(N), length(N))

HMM.cont.univariate <- verifyModel(list( "Model"="GHMM", 
                                         "StateNames" = N,
                                         "A" = A, 
                                         "Mu" = Mu, 
                                         "Sigma" = Sigma, 
                                         "Pi" = Pi))

# Data simulation
set.seed(100)
length <- 100
observationSequence <- generateObservations(HMM.cont.univariate, length)

#Sequence evaluation

# It assumes that it will be evaluated using the forward algorithm
evaluation(HMM.cont.univariate, observationSequence$Y)  

# The user sets the backward algorithm to evaluate the algorithm
evaluation(HMM.cont.univariate, observationSequence$Y, "b") 

## Values for a hidden Markov model with continuous observations                          
# Number of hidden states = 2
# Multivariate gaussian mixture model
# Observed vector with dimensionality of 3
N = c("X1","X2")
M <- 3

# Same number of dimensions
Sigma <- array(0, dim =c(M,M,length(N)))
Sigma[,,1] <- matrix(c(1.0,0.8,0.8,
                       0.8,1.0,0.8,
                       0.8,0.8,1.0), ncol = M,  
                     byrow = TRUE)
Sigma[,,2] <- matrix(c(1.0,0.4,0.6,
                       0.4,1.0,0.8,
                       0.6,0.8,1.0), ncol = M,
                     byrow = TRUE)
Mu <- matrix(c(0, 5, 
               10, 0, 
               5, 10), 
             nrow = M, 
             byrow = TRUE)

A <- matrix(c(0.6, 0.4,
              0.3, 0.7), 
            ncol = length(N),
            byrow = TRUE)
Pi <- c(0.5, 0.5)

HMM.cont.multi <- verifyModel(list( "Model" = "GHMM",
                                    "StateNames" = N,
                                    "A" = A, 
                                    "Mu" = Mu, 
                                    "Sigma" = Sigma, 
                                    "Pi" = Pi))

# Data simulation
set.seed(100)
length <- 100
observationSequence <- generateObservations(HMM.cont.multi, length)

#Sequence evaluation

# It assumes that it will be evaluated using the forward algorithm
evaluation(HMM.cont.multi, observationSequence$Y)  

# The user sets the backward algorithm to evaluate the algorithm
evaluation(HMM.cont.multi, observationSequence$Y, "b") 

RcppHMM documentation built on May 2, 2019, 8:56 a.m.