viterbi: Viterbi algorithm for hidden state decoding

Description Usage Arguments Details Value References See Also Examples

Description

Function used to get the most likely path of hidden states generated by the observed sequence.

Usage

1

Arguments

hmm

a list with the necessary variables to define a hidden Markov model.

sequence

sequence of observations to be decoded. HMM and PHMM use a vector. GHMM uses a matrix.

Details

The Viterbi algorithm is based in a greedy approach, therefore it would only the give the most probable path. GHMM uses a matrix with the variables as rows and consecutive observations in the columns.

Value

A vector with the path of hidden states that generated the observed sequence.

References

Cited references are listed on the RcppHMM manual page.

See Also

generateObservations , verifyModel , forwardBackward

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
## Values for a hidden Markov model with categorical observations
# Set the model parameters
n <- c("First","Second")
m <- c("A","T","C","G")
A <- matrix(c(0.8,0.2,
              0.1,0.9),
            nrow = 2,
            byrow = TRUE)

B <- matrix(c(0.2, 0.2, 0.3, 0.3,
              0.4, 0.4, 0.1, 0.1),
            nrow = 2,
            byrow = TRUE)

Pi <- c(0.5, 0.5)

params <- list( "Model" = "HMM",
                "StateNames" = n,
                "ObservationNames" = m,
                "A" = A,
                "B" = B,
                "Pi" = Pi)

HMM <- verifyModel(params)

# Data simulation
set.seed(100)
length <- 100
observationSequence <- generateObservations(HMM, length)

#Sequence decoding
hiddenStates <- viterbi(HMM, observationSequence$Y)
print(hiddenStates)

## Values for a hidden Markov model with discrete observations

n <- c("Low","Normal","High")

A <- matrix(c(0.5, 0.3,0.2,
              0.2, 0.6, 0.2,
              0.1, 0.3, 0.6),
            ncol=length(n), byrow=TRUE)

B <- c(2600,  # First distribution with mean 2600
       2700,  # Second distribution with mean 2700
       2800)  # Third distribution with mean 2800

Pi <- rep(1/length(n), length(n))

HMM.discrete <- verifyModel(list("Model"="PHMM", "StateNames" = n, "A" = A, "B" = B, "Pi" = Pi))

# Data simulation
set.seed(100)
length <- 100
observationSequence <- generateObservations(HMM.discrete, length)

#Sequence decoding
hiddenStates <- viterbi(HMM.discrete, observationSequence$Y)
print(hiddenStates)

## Values for a hidden Markov model with continuous observations                          
# Number of hidden states = 3
# Univariate gaussian mixture model

N = c("Low","Normal", "High")
A <- matrix(c(0.5, 0.3,0.2,
              0.2, 0.6, 0.2,
              0.1, 0.3, 0.6),
            ncol= length(N), byrow = TRUE)

Mu <- matrix(c(0, 50, 100), ncol = length(N))
Sigma <- array(c(144, 400, 100), dim = c(1,1,length(N)))
Pi <- rep(1/length(N), length(N))

HMM.cont.univariate <- verifyModel(list( "Model"="GHMM", 
                              "StateNames" = N,
                              "A" = A, 
                              "Mu" = Mu, 
                              "Sigma" = Sigma, 
                              "Pi" = Pi))

# Data simulation
set.seed(100)
length <- 100
observationSequence <- generateObservations(HMM.cont.univariate, length)

#Sequence decoding
hiddenStates <- viterbi(HMM.cont.univariate, observationSequence$Y)
print(hiddenStates)

## Values for a hidden Markov model with continuous observations                          
# Number of hidden states = 2
# Multivariate gaussian mixture model
# Observed vector with dimensionality of 3
N = c("X1","X2")
M <- 3

# Same number of dimensions
Sigma <- array(0, dim =c(M,M,length(N)))
Sigma[,,1] <- matrix(c(1.0,0.8,0.8,
                       0.8,1.0,0.8,
                       0.8,0.8,1.0), ncol = M,  
                     byrow = TRUE)
Sigma[,,2] <- matrix(c(1.0,0.4,0.6,
                       0.4,1.0,0.8,
                       0.6,0.8,1.0), ncol = M,
                     byrow = TRUE)
Mu <- matrix(c(0, 5, 
               10, 0, 
               5, 10), 
             nrow = M, 
             byrow = TRUE)

A <- matrix(c(0.6, 0.4,
              0.3, 0.7), 
            ncol = length(N),
            byrow = TRUE)
Pi <- c(0.5, 0.5)

HMM.cont.multi <- verifyModel(list( "Model" = "GHMM",
                              "StateNames" = N,
                              "A" = A, 
                              "Mu" = Mu, 
                              "Sigma" = Sigma, 
                              "Pi" = Pi))

# Data simulation
set.seed(100)
length <- 100
observationSequence <- generateObservations(HMM.cont.multi, length)

#Sequence decoding
hiddenStates <- viterbi(HMM.cont.multi, observationSequence$Y)
print(hiddenStates)

RcppHMM documentation built on May 2, 2019, 8:56 a.m.